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FOREWORD

Many current problems in hydrodynamics are concerned with bodies
moving at high velocities in fluids, which inevitably entail the formation
of free boundaries. In the majority of cases exact solutions of such prob-
lems cannot be found.

This monograph deals with general physical flow properties at the front
of a body in a fluid, flows with developed cavitation, planing and other
related situations, when allowance must be made for free-boundary effects
and surface discontinuity.

Theorems and general approaches to the problem have been concerned
to an equal extent with both two- and three-dimensional flows, which allow
one, with sufficient generality, to construct a model of the effect under
consideration, carry out approximate calculations, interpret experiments,
and formulate specific mathematical problems. This being the case, the
author almost completely omitted well-known solutions to two-dimensional
problems dealing with collisions, free-jet flow past bodies and planing;
applicable solutions are therefore quoted as known results which may be
found in the literature,

Analysis of complicated flows arising on the formation of free boundaries,
in many cases enables one to successfully develop a method for finding
comprehensive estimates and for deriving relatively simple formulas with
which to compute some effects which cannot be calculated with mathematical
exactitude. The author strove, if only to a limited extent, to comply with
engineering requirements; different engineering aspects involving the use
of simple methods are investigated, and preliminary quantitative estimates
of complex phenomena associated with the motion of solid bodies in a fluid
are made. Consequently, many results are derived from simple computa-
tional formulas. .

It is usually difficult to theoretically assess the accuracy of a formula
obtained by approximation methods, Therefore, in every section basic
experimental data are cited and compared with the approximate theoretical
results. Their agreement under specific conditions may serve as a basis
for the use of both the results themselves and of the method involved in their
derivation. One should bear in mind that very few important practical
hydrodynamic problems are solved theoretically with the aid of flow patterns
which are fairly close to those in actual flows. In the majority of important
cases, in order to extract mathematical solutions, the original flow model
is simplified to some extent and the resulting solutions reflect only to a
limited extent the actual physical processes involved. This situation may
be illustrated by problems on hydrofoils solved in the linear approximation
on the assumption that the free surface is plane, and that both the hydrofoil
thickness and angle of attack are infinitesimal. In actual fact, for a profile



of finite thickness and finite angle of attack the free surface is to some
extent distorted, because the hydrofoil may be raised above the undisturbed
1level, although this is by no means evident from linear theory. It is
generally impossible to construct a nonlinear theory and so it is almost
always necessary to set up an experiment which, however, cannot yield
»scientific and practical data without theoretical analysis of its design and
results. For this purpose an approximate computation may prove useful.

The classical results of Keldysh, Lavrent'ev and Sedov directly con-
cerned with continuous motion of fluids, subject to certain modifications,
appear to be applicable to discontinuous cavitational flow. In particular,
Sedov's thin-wing theory appears to be valid also for a cavitating hydrofoil.

This monograph is based on a paper* by the author bearing the same
title.

The section dealing with submersion of a body in a fluid has been sup-
plemented by data on maximum [collapse] cavity dimensions, energy loss
in collisions, and on approximations made necessary by the need to make
allowance for the fluid's compressibility, compiled on the basis of pub-
lished work by the author.

The general equations of dynamics of a thin body are solved in the form
of a formula for computing the force due to vibrations of rigid and flexible
thin bodies. Resulis for a flexible body explain the swimming mechanism
of fish and sea animals, and also allow interesting computations to be
undertaken. Subsequent development of this theory to include inhomo-
geneous wakes of oscillating bodies, analysis of various profiles and
refinement of experimental results allows one to explain in detail the
mechanism of a flapping wing.

* Logvinovich, G.V. Gidrodinamika techenii so svobodnymi granitsami (Hydrodynamics of Free-Boundary
Flows).— In: Trudy TsAGI, 935. Moskva. 1965.




Chapter One

PRINCIPAL PROPERTIES OF FREE BOUNDARIES

When solid bodies are submerged in a fluid, the free boundaries of the
latter are set into motion, which in many cases cannot be neglected. If
the body moves at high velocity, but the velocity of the fluid is still sub-
stantially smaller than the speed of sound, and the different points at the
surface of the body do not simultaneously make contact with the fluid, then
the ponderability [weight] and compressibility of the fluid can be neglected.
When many points at the body surface come simultaneously into contact
with the fluid (impact) the compressibility must be taken into account, since
the impact produces compression waves, which carry away a part of the
energy. The surface tension forces are inconsequential, if the dimensions
of the bodies and the dynamic pressures in the fluid are sufficiently large.
The frictional forces are not always negligible; however, they can usually
be approximately taken into account and added to the result obtained with
these neglected.

Usually the free boundaries of a fluid are limited by the atmosphere.
Their motion sets the atmospheric gas into motion, which involves some
changes in the pressure at the free boundary. However, in the majority
of cases the density of the gas is negligible compared with that of the liquid.
Hence the pressure at each point of the free boundary can to a good approxi-
mation be regarded as uniform and not time-dependent.

The above considerations make it possible to treat the fluid as ideal,
weightless and incompressible, and the pressure at the free boundaries
as constant. In an ideal fluid any change in the motion can occur only due
to normal pressures applied to the fluid boundaries. Consequently, if the
flow was potential before being acted upon by the body, it will remain sq
also thereafter.

Before passing on to the study of particular cases, we consider the basic
general properties of free, constant-pressure boundaries.

The physical propertles of moving free boundaries, postulated below
reduce to three conditions: 1) the pressure along the free boundary is
constant, and consequently the pressure gradient within the fluid at the
free boundary is normal to it; 2) the rate at which a point of the free
boundary moves along the normal to it is equal to the projection, on this
normal, of the absolute velocity of a fluid particle, coinciding with this
point; 3) the fluid particles, once they arrive at the free boundary, remain
there during the subsequent motion.



1. The dynamic boundary condition

We assume that the orthogonal coordinate system x, y, z is associated with
‘he quiescent fluid, and let the unit vectors of the coordinate axes be i j and
k. The unit vectors of the outward normal and of two orthogonal tangents
to the free boundary at some point §, with which the particle under study
coincides, are denoted by ¢, e, and ¢. The absolute particle velocity is
u=eu, +eu,+ eu, (Figure 1),

Euler's equation for an ideal fluid not acted upon by mass forces is*

Du i
D—‘=—-a-gradpA (1.1)

The first boundary condition, which follows from the fact that the pres-
sure is the same at any point of the free surface, reduces to the following
equivalent expressions:

E,,x%—=é,,xgradp=0 (1.2)
or

- Du - Du

ec§=01 erlD)_‘:=0' (12a)

Consequently, the absolute acceleration of fluid particles at a free, constant-
pressure surface is always directed along the normal to this surface.

The motion of fluid particles forming the free boundary is equivalent to
frictionless motion of a material point over a moving surface with the normal

reaction defined by Z—s Hence all the principles studied in dynamics apply
also here.

The components of angular velocity of the free surface at the point where
the particle is located are denoted by w, w» and o, where s, n and v are the
pertinent axes.

The absolute acceleration of the particle is

- - Du' - (Du,
w=—t.=e,(3t—+ur(n,,—u,,m,)+e,,(w+u,w,—u,m,)+

- [Du,
+ eT( Dt + Uy — uswn) .

Expansion of the vector product e, x %'z;' yields

Du,
. D + Uy — U, O = 0.
. (1.3)

(3
1
Ti T Uns — U, = 0.

The pressure gradient is p= Esgs‘.’ +Eng.% +é‘g—:, but since it follows

from equation (1.2) that % =0 and % =0 we obtain
ds at

Du
Tt"-+u‘m,—u,o),=———-——. (1.4)

oD .
* The Stokes derivative D¢ s used in its ordinary sense, i.e., when differentiation pertains to individual
fluid particles.
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In particular, for plane-parallel motion of a segment of the free surface
and assuming that the flow in each plane z = const is the same, and aligning
thes and n axes in this plane in the manner shown in Figure 2, we derive

Ug= 0, w,=0, o =%;§, and o, =0, where « is the angle between s and «x.

Hence, by virtue of the fact that e‘g—';- =0, boundary conditions (1.3) and
(1.4) can be written in the form

Du Da Du Da. _ 1 dp

S-=U.Diy o +t%pr=—gm " (1.5)
It is easy to show that conditions (1.5) hold for any axisymmetrical flow,
provided that axes s and n coincide with the plane passing through the
axis of symmetry.

All hydrodynamic problems with moving free boundaries can be sub-
divided into two groups. The first group comprises flows in which new
particles do not emerge at the free surface, for example, an infinite
submerged wedge or cone without flow separation (Figure 3). In these
cases the individual particles can be designated by their initial (¢ = 0)
coordinates at the undisturbed free surface (x, 4, %). The subsegquent
location of the particle, expressed as x = x(xy, 4y 2 th ¥ = ¥ Xp. Yo, 2, O)»
and z =z(x, Y, % /), defines its trajectory ¥.

The second group of problems includes flows in which new particles,
until now residing within the fluid, rise to the free surface. These are
instances of planing and submersion of wedges and cones with finite
dimensions, when free jets or cavities form at the edges of bodies.
Obviously these particles can be designated by the time and coordinates
of the point at which they are shedded from the solid surface, which
again are functions of time. The free surfaces formed by particles
situated there at the start of motion will be termed outer free boundaries,
while the free boundaries formed by particles shedded by the edges of
the body are termed inner free boundaries. We note that in a number
of the cases outer free boundaries may coexist simultaneously with the
formation of inner boundaries (Figure 4). Thus, the free surface behind
the planing step of a gliding [hydrofoil] vessel is an inner free surface,
while that at the front and sides of the hydrofoil and wake is an outer
free surface,
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After the particles emerge at the free surface, the behavior of the
[individual] parts of these boundaries is the same and obeys the same equa-
tions, irrespective as to whether the boundaries are inner or outer.
However, if the fluid started moving from rest, then for an outer free
boundary at time ¢t =0 the velocities of all the boundary particles will be
= 0, u,,= 0 and u, =0. For inner free boundaries the particle emerges
at the boundary at some time ¢ >0 and has in general nonzero initial
velocities,

Each individual fluid particle is designated by E, which denotes the set
of its initial coordinates. In the particular case of two-dimensional or
axisymmetrical flows it is convenient, for outer boundaries, to regard t
as denoting the initial distance from the particle to the coordinate origin,
while the meaning of ¢ for inner boundaries will be clarified below.




2. The kinematic boundary condition

Let us consider the two-dimensional motion of a free-surface element of
length 8, on which are present particles & and §+ & (Figure 5). Let the
coordinates of these particles at the time t=¢, be §=5 and &+ 6t =s + &s,
Denoting the velocity vector pertaining to each particle by z (¢, #) we find that the
absolute velocity of particle ¢ is 4 ¢t,) and its displacement over the small
time interval & is 4(&, t)8 . The velocity of particle t+ 8% at the same

instant w111 be u(E+ 688 t) =u@ ty) +¥6§ and its displacement will be
u(k. 1) o + 65& Denoting, as before, the unit vectors along the tangent

and normal to the free surface at time 1, by ¢, and ¢, respectively, we find
that at time ¢, + & the distance between the points under study changes by

an amount é,g—g— 888¢ and the free-surface element in its new position makes an
angle da = é,,g—'z- 6t with the original position. The distance along the boundary
s between particles ¢ and {4 6 at time ¢, 4 & will be &’ = &5 +e_,g.§. &tt, while

at time ¢, it was 6t = 6s.

FIGURE 5.

We now introduce the relative elongation of the free surface

limfE )2
e=lim (G —1)=F— L

As & -0, we have

. - 3
6a=e,,a-§—6t=e at 6s-6§-e,3€—6€&



and hence
De - o Ou da |

-DT Tl =% s
o o o (1.6)
o - Ou u, da.

Tr Teas T TG
Here the partial derivative is used in the sense that the time is held con-
stant while differentiation is performed by moving from one particle to
another along the free boundary s. The curvature of this surface is g% = —l,
where R = R (s. #§ is the radius of curvature of the free surface in the region
of particle £ under study if ¢ =s. The first of equations (1.6) yields the
theorem on "nonextensibility' of free boundaries.

The distances between particles measured along the free surface remain

constant if e =const or % =0, It follows from the first of equations (1.6)

that this condition is satisfied only when vector ‘;—'; is orthogonal to element s.

Theorem I. The distances between individual particles along a moving
free surface remain constant only when the partial derivative of the absolute
velocity vector of the fluid along the free surface, taken along this surface,
is orthogonal to the free surface.

Substitution of the right-hand side of the second of equations (1.6) into
the first of equations (1.5) yields the Wagner generalized boundary condition

O B ) @)

The fact that free-surface elements & have no inflection in the vicinity of

particle ¢ is expressed by the condition g-f‘=0.

Theorem II. The tangential velocities u, (§, #) of individual particles
at a two-dimensional free boundary moving parallel to itself (Figure 6)
cannot be changed by arbitrarily modifying
the normal velocity of the boundary.

This theorem is of importance in
the study of unsteady motion of bodies
with spray sheets forming at their
surface.

If the free surface is described by
the equation F (x,y, zz ) =0, then the
normal velocity of each point of this
surface is [/10/

< Un= u,(t)

S~

o
3
(

v"=l/of T [OF\*  [OF YT
) + (&) + (=)
st st+ot st+26t However, velocity v, pertains to points

of surface F, and not to particles t at
FIGURE 6. this surface.




3. Orthogonal free surface

A free boundary, for which the particle velocity vector u at all its points
is directed normal to this surface, will be termed an orthogonal free surface.
Certain general theorems hold for such free boundaries.

Theorem III. A continuous free boundary moving at finite velocities
and accelerations can be orthogonal to the trajectories of particles
belonging to it only if the trajectories of these particles describe straight
lines.

-Let particle §, belonging to free boundary s (Figure 7), move along
trajectory s’ which has a radius of curvature R’ at the point of intersection

with s; the absolute velocity of the particle is u =%, the accelerations

tangential and normal {o the trajectory are ’%— and ;’;,—,

tions lying in the plane tangent to the trajectory. It is evident that the
absolute value of the tangent of the angle between the tangent to the tra-
jectory and w, the vector of absolute acceleration of the particle, is

equal to the ratio 2—2, :Z—;‘. According to dynamic conditions (1.1) and (1.2)

vector @ is orthogonal to s; consequently, directions s and s’ will be ortho-

all these accelera-

gonal when u+0, when either R" - o or %, o (if R is finite). This yields

ar
the above theorem.

Stream- P
line )

FIGURE 7. FIGURE 8.

If surface s is orthogonal to particle trajectories s (Figure 8), then
according to Theorem III trajectories s are straight lines and, therefore,

the angular velocity Da in the vicinity of each particle at surface s is

Dt
zero, and also the tangential component of absolute velocity v, is zero.
Then it follows from the second of equations (1.6) that % = 0 and, hence,

the normal velocity «, is a function of time, but not of s along the orthogonal
free surfaces s.



The difference in velocity potentials at two points of a free surface is
2

=0, = Su,ds . At an orthogonal free surface 4, =0, and so ¢,— ¢, =0 for

all point‘s of this surface at any time.
Theorem IV. A free orthogonal surface is an equipotential surface,
the potential of which is not a function of s, but may be a function of time.
Continuous closed orthogonal free surfaces, which move with finite
and continuous velocities and accelerations, may be either spherical or
cylindrical surfaces, which confine a fluid volume from within. Problems
of this type are related, in particular, to expansion of gas bubbles in a
liguid, and may also include the approximate solution of the problem of
flow of a thin jet past a slender circular cone, with developed cavitation
past the cone. The solution of the problem of expansion of a spherical
cavity due to the pressure of an included gas is known /10/, Both the
above problems are considered below, stated somewhat differently and
in a more general form.

In proving Theorem IIl we omitted the case du

dt
to "impact' origination of flow. For example, suppose the flow which
develops upon uniform submersion of a wedge is stopped at some instant,
but the free boundaries retain the shape they acquired during submersion.
Then (t = {,) the wedge is instantaneously set into motion by applying an
impulsive force toit. It is clear that during the infinitesimal period of accelera-
tionof the wedge, the particles at the free surface will be subjected to infinite
acceleration which, according to equation(1.1), are directed normal to the curved
free surface. These accelerations will
produce finite velocities u of the
u(t+0ot) particles; these velocities will be
normal to boundary s and will satisfy
the solution of the corresponding
boundary-layer problem.
However, surface s is orthogonal
immediately following the impact.
Since the curvature of surface s is

— o, which corresponds

[2
variable and 520, it follows from

equations (1.5) that, although u,=0

: s Du Da .
at time ¢, the acceler‘atlonD_‘s =u, 5+ 0;

FIGURE 9.

from equations (1.6) the angular velocity
of elements of s at the initial instant will
o
be %— =%;'— when g, = 0. Hence u, + 0 at each point of s at subsequent times,
and the free boundary ceases to be orthogonal after the impact (Figure 9).
The above considerations make it possible to assess the rate of increment
of the velocity potential ¢ at the free surface immediately following the
impact. In fact, for some small time interval & after the impact

D o (ul 2 o fun
Suy= -8t =[E ('%) +u,u,,a§]at=§ ("_Q-) ot.

The second term in the brackets is neglected as a high-order infinitesimal.

10




Assuming that the free surface extends to infinity, where the velocity
potential ¢ = 0, we obtain for point s

2 e 2
80,= 78t =[—Sa%(”—;>ds]at.

s

The fraction of kinetic energy of the fluid, corresponding to the integral

of ¢u,ds along the free surface, will be &T,= % Suﬁds 8 1t is easy to
dT'
dr
through the initial free boundary. The cumulative potential ¢, and energy
T, cannot be changed by subsequently stopping the body. Hence, if the
body is stopped some time after it has been set into motion, the fluid
will not come to a complete rest. This is precisely the main difference
between motions with free boundaries and motion in an infinite fluid.

show that quantity —= at ¢ =1¢, is equal to half the kinetic energy flux

4. Steady free boundaries

The term steady free boundary is applied to a surface which moves
relative to a stationary fluid uniformly and in a straight line, without
changing form. In the two-dimensional case the steady surface can be
expressed in the x. y coordinate system associated with the quiescent
fluid by the equation F(x —V, ¢t y— V, ) = 0; this equation is not an
explicit function of time r. The steady surface can clearly be treated
as stationary in the ', y coordinate system by setting r=x' + V, and
y=y + V1.

Let us clarify some general properties of steady boundaries. Suppose
vector V, =iV, + jV, is the translational velocity of the free boundary, and
vector V, the relative velocity of a boundary particle in the system of
X, ¥ coordinates. The absolute particle velocity is then u =V, + V...

Since the particle must remain all the time at surface s, its relative
velocity can be directed only along the arc of this surface; consequently
V. =%V,. The dynamic boundary condition (1.5) thus yields

- - (dV, - DV, . p,
e-o:=e-(47'+esﬁ"+en"s7)=°-

FIGURE 10,
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d
Since it has been assumed that =0, o =0 for each particle at a

steady free boundary at any time. Hence each particle moves with time
along boundary s, and velocity V; along this boundary is constant (Figure 10).
Theorem V (Wagner). The relative particulate velocity along any
steady free boundary is constant for all particles at all points on the
boundary.
The projections of the absolute velocity of particle § on the tangent
and normal to the boundary are

Uy =g = eV, + Vg u, = el = eV, (1.9)
If surface s contains a point or points where «, = 0 and u, =0, then it
follows from the second of equations (1.9) that the direction of transport
[reference-frame] velocity at these points coincides with the direction of
the tangent to s. The second of equations (1.9) then yields V, + V, =0
(Figure 11).

FIGURE 11.

Theorem VI, The relative fluid particle velocity at a steady free
surface extending into the quiescent fluid, where the direction of the
tangent to the free surface coincides with the direction of the transport
[reference-frame] velocity, is always equal in absolute magnitude to
the translational velocity and is directed opposite to it.

If V,4-V,=0, then, setting angle (s,V,)=a’, we find (see Figure 11)
that u, =V,sina” wu,=V,(cosa’ — [) = — 2V, sinz%'— , and the absolute magnitude

of the velocity is u = 2V, sin%. The ratio of R, the radius of curvature

of the trajectory, to the radius of curvature R of surface s will then be

% = 4sin§2;. Obviously, the angle between the directions of the transport

[reference-frame] and absolute velocity is -fz—(n — a), i.€., half the angle
between ¥, and V,.




Theorem VII. The absolute velocity vector of every particle at each
point of a steady free boundary extending into the quiescent fluid, bisects
the angle between the transport and relative velocities.

We determine the distance between particles. Substituting the expres-
sion for Z into the first of equations (1.6) we obtain

De -odu -0V, oV
7 ¥ riad Jly e ol e

The transport velocity is constant over the entire surface and therefore
‘;lf= 0. The relative velocity v, is constant according to Theorem V;
s

v
hence -—af =0, from which %':—= 0. This implies that e is constant along s.

If e =0 at one point of surface s, then e =0 over the entire free boundary.

Theorem VIII. The distance between fluid particles along a steady
free surface always remains constant.

This theorem is clearified by Figure 12. Lines s, s, s, depict respec-
tively equal trajectories of particles §,, & and §;, which are initially located
at the undisturbed boundary, coinciding with the x axis. Free boundary
s intersects these trajectories during the subsequent instants of time
t. 3 and ¢;, so that distance Af between the particles remains constant.

We note that Theorems V through VIII lend themselves to elementary
proof by ""reversing the motion," i.e., by regarding surface s as stationary
and the liquid as moving with velocity V,. Then the free surface will be
a streamline at which the relative velocity is constant on the basis of
Bernoulli's equations. However, the only approach used here is that of
study of the "absolute' motion relative to a fluid at rest at infinity.

y s 8 s

0

HA i s

FIGURE 12. FIGURE 13.

Let us investigate whether a steady free surface can have cusps.
Assume that a steady free boundary has a cusp s (Figure 13), and let
surface s at all its points far from point s, coincide with the direction of
the transport velocity V,, and let the absolute velocities of particles at
these surface regions be zero. It follows from Theorems V and VI
that in this case the relative velocity V, in the forward part of s is directed
toward point 5, while that in the rear part of 5 is directed away from this



point. Consequently, particle §, which at a given time corresponds to the
cusp s, should simultaneously have velocities @ =V, +¢,V,and &’ =V, +&.V,,
which are not equal, since unit vectors é, and ¢ from both sides of the cusp
are different. Hence it follows that particle § should rotate. But the points
contained within the cusp are irrotational, since the fluid is assumed to be
ideal and moving only by virtue of normal pressures. Consequently, rota-
tion at point s is impossible.

Theorem IX. A stready free surface serving as the boundary of an
irrotational fluid cannot have cusps.

It is known that trochoidal waves have a cusp and move at constant
velocity without losing their shape. Consequently, in this case the free
surface is steady and also has a cusp. This apparent contradiction to
Theorem IX is due to the fact that the trochoidal wave has a nonzero
vortex, while Theorem IX is valid for a free surface bounding irrotational
flow.

We shall show that a closed steady free boundary cannot move through
a fluid at rest. Let us assume that a space within the fluid is bounded by
a closed surface s, moving with constant velocity V, within a fluid at rest
and satisfying all the conditions for steady boundaries. If the absolute
particle velocity at a single point of s is given, then vector equation
w="V, + 8V will yield the velocity V, which, according to Theorem V, is
constant along the entire boundary s. If V, = 0, then the velocity circula-
tion at the free surface will be nonzero, thus giving rise to the Zhukovskii
force which, however, should be zero, since by the statement of the prob-
lem the pressure at each point of the free surface is the same. Thus
velocity V, should be equal to zero, while the absolute particulate velocities
at surface s should be g =V,. Obviously, this condition can be satisfied
when curve s bounds a region filled with fluid undergoing translational
motion. When the outer space is filled with fluid, vector & of each particle
¢ coincides with the direction of the streamline passing through this particle
(Figure 14). The above condition can be satisfied only when the entire fluid

undergoes translational motion with velocity V, or (with the problem as stated

here) V, = 0, since V, is by definition the transport velocity relative to a
fluid at rest.

FIGURE 14.

Theorem X. A fluid volume at rest at infinity cannot contain a closed
steady free surface moving with nonzero transport velocity.

Steady free boundaries arise ahead of a planing plate or on uniform
translational motion of a body within a fluid accompanied by formation of




a cavity behind it. In particular, Theorem X without the solution of

the potential problem explains the phenomenon of reentrant jets* ab
(Figure 15) during cavitating flow
past a plate or some other body.
Physical experience shows that
reentrant jets are unstable, break
up, migrate to the boundaries of

the cavity, and are carried away

by the flow. In the idealized state-
ment of the problem pressure p, within
the cavity is lower than the pressure
at infinity, and so the absolute value

FIGURE 15. . e

of the relative velocity is V,=

=V, 1 +0, where the cavitation
number is o =22 ; Pt > 0. Absolute velocity vector i no longer bisects the

angle between V, a2nd V,; the free surface proper is formed by particles
shed from the edges of the plate and acts as an inner free boundary.
However, all the general results pertaining to free boundaries are
applicable also in this case.

5. Self-similar free boundaries

A free boundary which remains geometrically similar to itself at any
time is called a self-similar free boundary (Figure 16). Such free boundaries
arise, for example, upon symmetrical submersion of a wedge or cone, if
one considers the boundary within the plane passing through the axis of
symmetry.

vy
7
¢, 5
/ X
4l g
/o f]
f
8/ 5 n t *at s
0 :
¢, ¢, x
FIGURE 16.

To retain geometrical similarity each linear dimension of a self-
similar free surface should increase (or decrease) at a rate proportional to
this linear dimension. If the equation of the free surface in polar

* [First discovered by Efros, D.A.— DAN SSSR, Vol.51, No.4, pp.267—270. 1946; and Vol.60, pp.29—31.
1948.]
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coordinates r, 6 is expressed in the form r = 4f (), where h is some linear
scale, then the absolute magnitude of the radial velocity of the boundary

at 6 =const will be ¥, =~ #, and the radial velocity vector will be V. =rV,

where r, is the unit vector in the r direction. We shall measure free-surface
arc s from ray 0A, along some fluid particle slides. The absolute velocity
of fluid particle & at surface s is composed of the radial velocity ¥, and
relative tangential velocity V,=¢V, along the free surface. The absolute
velocity vector of particle £ has the form

u=V, +V,=ry Lh+eV, (1.10)

We shall now examine the properties of a self-similar free boundary
propagating with constant velocity h =4 orV, = -:_ for each value of @.

Figure 16 shows two positions of the free boundary at times ¢ and ¢t +d¢;

it is assumed that particle §, is initially (¢ = 0) at the center of similarity

0, while the free surface coincides with the x axis., From the self-similarity
of flow we have that absolute velocities 4 (¢, #) of the fluid at points 1 and 2
where the radius-vector 7 meets s (f) and s(t +df) are equal, i.e., 4 = u,.
Passing from point 1 to point 3 along a line with constant ¢, and then from
point 3 to point 2 with constant s, we find

u,—u,+a ds+—dt (1.11)
This transition can be expressed differently, as eds +udt =% dt. From this,
using the vectorial definition of velocity given by equation (1.10), we find
that v, = — % _ 5. Substitution of this result into equation (1.11),

&
making use of the fact that u,=u, yields

du s Ju
The vector u(, ! satisfies ‘;T; _%5 Hence if dynamic boundary condition
DQF = 0 is satisfied, then the kinematic condition 1%5— = e;g- =0 is satisfied

simultaneously. This condition shows that a moving free surface has
constant length and that dlstances between individual particles remain
constant (£=35).

Theorem XI. Distances between particles at a self-similar plane
or axisymmetrical free surface propagating with constant velocity remain
constant.

This theorem and all the previous deviations pertain in substance to
self- similar outer free boundaries, which are produced on self-similar
submersion of bodies, when an undisturbed free surface is broken by a
body and particles which find themselves at the point of discontinuity
continue moving along the edges of the body (Figure 3). A more detailed
analysis of properties of self-similar free boundaries which arise on
submersion of bodies into a fluid is given in Chapter Four.
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6. The spray root

The immersion of bodies, planing, and some other cases are
accompanied by the formation of spray sheets near the body surface.
The free surface far from the body does not usually curve much, but
the curvature in the vicinity of the spray-sheet base increases sharply,
and angle e made by the free surface with the horizontal attains high
values over a small segment of s. It will subsequently be seen that
small such regions [the spray root] are important in the formation of the flow
and in the force exerted by the body on the fluid. In this connection we shall
clarify the principal properties of the spray root for two-dimensional or
axisymmetrical flows.

To calculate the tangent of the absolute particulate velocity u. one
can in general integrate the first of equations (1.5), which expresses
the dynamic boundary condition. This yields

a;

Uy, — lls, = gunda. (1.13)

@,

It should, however, be remembered that velocities u, and u, pertain
to the same particle §; here 4, =4,(¢,f) and a =c (%, f). Hence in order to
carry out integration, an expression must first be found for u, =4, @).
In general this is difficult. In the particular case of a steady free surface
(see Section 4), when the transport velocity of the boundary (for example,
V,) is constant and equal to i¥,, the free surface is given by y={(») in
the moving coordinate system, and as x—+>oo, y= 0 and y' - 0, Theorem VI
holds. Since in this case the tangential relative velocity V,=—V, is
constant along s, while the normal velocity of the particle is u, = eV, =

a
= —V,sina, we find that u,¢ @) = —fV,sinada: —V,.(1—cosa).

It was taken into account while iontegrating that as x - o0,4, - 0 and
@ - 0. This result (mentioned in Section 5) shows that the absolute
tangential velocity at a steady surface depends only on the angle of turn
¢ and not on the form of the equation of the free surface. In the case of
an accelerating free surface it is also possible to integrate equation (1.2)
or (1.7), but the calculations become complicated even in the simplest of
cases.

Denoting the spray-root surface length by As and the transport

A
acceleration by w,, it can be shown that when e ,s &1, the tangential
.

velocity 4, after traversing the curved region is determined exactly as
for a steady surface,

Theorem XII (Wagner). The relative tangential velocity of particles
along a short spray-root surface segment is approximately constant and
in value is close to the transport velocity of the curving segment proper.
This theorem is illustrated in Figures 17 and 18,



|
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FIGURE 17. FIGURE 18.

7. 'The tip of a spray sheet

The point at which the free boundary of the fluid is in contact with solid
boundaries of the body is called the tip of the spray sheet (Figure 19).
The following theorem is easily proved from
continuity and flow irrotation conditions.

Theorem XIII (Wagner). The absolute velocity
of fluid particles at the tip of a spray sheet
is equal to the absolute velocity of the tip proper.

A spray-sheet tip forms either at the surface
of a body which is in contact with the free surface,
or in the region when the outer and inner free
surfaces merge upon formation of free jets
(splashes).

s

FIGURE 19.
The above theorems as such do not yield

solutions to specific problems. In effect they
only define the kinematics of the motion, since the utilization of the
dynamic boundary layer does not go beyond using the condition of ortho-
gonality of the absolute acceleration vector of a surface particle to the
free surface. However, the limitations imposed by these theorems
together with other hydrodynamic conditions make it possible to derive
useful results and to gain helpful insight into the flow pattern even before
solving the problem.




Chapter Two

SOME GENERAL PROPERTIES OF POTENTIAL
FREE-BOUNDARY FLOWS

In this chapter we shall consider some general properties of potential
and in general unsteady flows of an ideal fluid with moving free boundaries.
It should be remembered that in the overwhelming number of practical
problems involving the motion of bodies on fluid surfaces the free boundaries
have a complicated curvilinear shape, and it is virtually impossible to
solve the Laplace equation exactly. This requires certain simplifications,
the proper selection of which necessitates a detailed study of the flow.
1t is assumed that the reader is familiar with the theory of potential flows,
and hence attention is paid primarily to features inherent to free-boundary
flows. Particular attention is paid to clarification of some fine points in
the equations of hydrodynamics and, in addition, to constructing a physical,
clear flow pattern.

1. The velocity potential

Mathematically, the velocity potential ¢ is defined as a function of
coordinates x, y. z and of time ¢, the gradient of which is equal to the velocity
vector v at this point of space. Thus, v = grad ¢ Or

=% . %. o, 0% (2.1)

Us =g+ U»‘/=ay' 27 02

It is known from potential theory that function ¢ is singular in a
simply-connected space, possesses neither a maximum nor a minimum
within the fluid, and that the potential field is devoid of vortices and sources.

The fact that each elementary volume of the space should be supplied
by the same amount of fluid which is discharged from it is expressed for
an incompressible fluid by the continuity equation

.- Ou, 60” dv,
leU=§x—+W+§z——0

For potential flows substitution of components g%, g% and %l; into the above
expression yields the Laplace equation

o | 0% o
Aq>=5;_;,‘?+$+a-z—?=0. (2.2)
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This form of the Laplace equation is retained also in the coordi.ate
system moving with the flow. Any point x, y, z of the velocity field
vix. y, 2z 1) for which Ag = 0 (equation (2.2)) does not contain sources
or vortices.

It is sometimes convenient to consider the continuity condition for
some finite portion of space x, y, z filled by a fluid and confined by a
closed surface 2. Surface £ may be stationary as well as mobile, free
or solid. If the absolute velocities of transport of surface X along the
inner normal to it are denoted by V,, while the absolute fluid velocities
are designated as previously by ¢, then the general continuity equation
will express the fact that the flow of a fluid volume within region Z should
be equal to the rate of growth of the volume of region X proper. If ¢, is
taken to denote the unit vector of the inner normal, then the fluid volume
entering volume 2 per unit time through surface element 6% is — (V, —¢,v) 62,
while the rate of growth of the volume of region 2 is j}_]V,,dZ . Integrating

the first expression over the entire surface I and equating the result to
the second integral, we obtain the general continuity equation

SS},,EdE =0 (2.3)

This equation does not contain the proper motion of boundaries of
region £. It is important to remember that the general continuity equation
does not stipulate absence of vortices and sources within this region. The
presence within region £ of a closed vortex or source and sink of equal
strengths (a doublet) will not contradict equation (2.3). Hence the flow
satisfying this equation may be both potential and nonpotential [rotational)
in all or some parts of space ¥, while the flow satisfying condition (2.2)
in region I is potential at all points of this region.

2. The stream function

Stream function ¢ expresses the fluid flux per unit time through a

given surface. In the planar case &y = —u,0y and &p =v,bx; consequently,
b %
* T 0x 0y v 9y  ox

In the axisymmetrical case, with the y axis serving as the axis of
symmetry and x denoting the distance between the point and this axis, we
have §y = u,xéx For reference, we now present the Laplace equation for
¢ and the continuity equation for ¢ in the case of axisymmetrical flow with
y as the axis of symmetry. Since x is the distance from the point to the
above axis of symmetry, these equations assume the form

(2.4)
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The stream function at free boundaries will be treated as the flux
passing through area element &S of the free boundary per unit time
whenthis area element has been instantaneously stopped, while the
particles continue moving with velocity .

The positive direction here is that of the flow moving into the fluid
volume under study. If u,is directed outward from the free surface,
we have there &y =e¢,udS <0, since the inner normal is regarded as
positive. Figure 20 shows the pattern of streamlines extending from
the inner to the outer boundary.

g 5 -
"4 g,
]

+
. P ?:::/"

d¥=v,ds

y
FIGURE 20.

3. Boundary conditions and the general nature
of the flows

The boundary conditions at a surface of a solid bedy consist in the
fact that the normal component of V, of the velocity of a point on the body
is equal to the normal component of the absolute fluid velocity at this
point (impermeability of the solid surface). For potential flow this means

that g =V, =¢e (V. + [ x 7)) for each value of ¢, where V, is the velocity

of some center, fixed relative to the body, while w and r are respectively
the angular velocity vector of the body and the radius vector of a point on
the body surface with origin at this center.

At free boundaries also 3—9’;’ = u,,* but usually free boundaries must be

defined from the condition that pressure p at them is specified or usually
constant (see Chapter One).

The Laplace equation can in general have an infinite number of solu-
tions. However, it is known that the Laplace equation Ap = 0 has a unique

solution for each time ¢, if the values of @ or giz are specified at known
boundaries of region 2, or if values of ¢ are specified at one part of

surface £ and those of %—f at the other.

® The symbol u is reserved for denoting the absolute velocities at outer free boundaries, while v is used
for designating absolute velocities within the fluid and at solid boundaries. In Chapter One the inner
normal was treated as positive for the free boundary, for which reason the sign of ua is reversed here.
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For free boundary flows, where the problem of determining the shape
(equation) of the free boundary is difficult as such, it is imposseible in
many cases to obtain a unique solution of the Laplace equation for each
instant of time. However, the fact that the Laplace equation Ag =0 has
in principle a unique solution under the aforementioned conditions makes
it possible to prove Wagner's theorem on the uniqueness of the flow in
the presence of free boundaries,

Let us assume that when a body of specified shape is submerged in a
fluid, when only outer free boundaries form, we have given at time ¢,
the velocity ¥ of all the points of the body, and consequently

g%=é,,l7 at the surface of the body, the equation of the free surface

s(x.y.2,t) and the velocity distribution at it ua(s,t), i.e., u,,=g.i£_ on s

at time t,, and that these values satisfy the corresponding boundary
value problem Ag = 0 and hence uniquely define the potential field

. > . : Du
9(x, 4,2, t) within the entire fluid region. The values of o at t are

R s Dug 3 .
determined from the boundary condition * =u, (gu;én) (see equation (1.7)),

: u . Du
since u, and a—“sé, are known for t,, while the values of 5 at the

subsequent time ¢, 4 df are found from the expression
Du
U (S, by + dty = u, (s, ty)) + ﬁ’ dt.

Integration of this new value of u, along s yields @(s. t, + df) = @ (s, t,;) + do;
vectors udf define the new location of the boundary sit,+df). Solving

again the Laplace equation A¢ =0 for boundary conditions z% =e¢,V at the
surface of the body and ¢(s, ¢, + dfy on s, + dfy we derive the value of
u,(t, + d) on s, and consequently also of g—'s‘é, for (¢, +dt), etc.

Theorem XIV (Wagner). When the shape of the body, shape of free
boundaries and the velocity potential field of the fluid are given at the initial
time, while the shape of the body and the law governing its motion are
specified for the subsequent time instants, the hydrodynamic problem has
a unique solution for each subsequent time instant,

This theorem also applies to the case of emergence of new fluid par-
ticles at the free boundary.

4. Velocity potential at free boundaries

The velocity potential in a simply connected space can be expressed
as a linear velocity integral, taken along any reconcilable curve drawn
between points A and B. Denoting a contour element of length by ds and
the fluid velocity at points of this element by %, and denoting the tangential
velocity vector by &,, we have

°s

%—‘PA"S evds =

‘A

(v,dx + v, dy + v,d2).
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Referring point A to infinity, where the fluid is at rest, ®a can be
regarded as equal to an additive constant, which will be treated as equal
everywhere to zero. We note that, in order to regard ¢, as equal to zero,
we require a law governing the decrease in the tangent to the fluid velocity
distribution v, = ve, upon approaching the point of infinity, In particular,
for a two-dimensional source at the origin the fluid velocity decreases

along radius r as } and the integral Sg——— Inr + C does not tend to zero or

to a constant value at infinity. However, it will be shown below that
potentials of this kind are not encountered in the submersion phenomena
under study.

If contour s, along which the tangential velocity v, is integrated, is a
fluid contour, i.e., each of its points moves in space with the same
velocities as the fluid at this point, then the elementary component vds of
the velocity flux along this contour changes with time due to changes in
v, as well as due to changes in the length of element ds /10/. Hence

D Du,
o (v,dx):deJ-t- -+ vdu,,
since

D
o dx = dv,.

Constructing similar expressions along other axes, if the mass forces
have potential U and pressure p is a function only of density g, and also
making use of the fact that the Euler equation for the x axis yields

= — i — o then

B B

D D dp 2

5ﬂ%~¢)=m‘vﬁx+w@4wﬂ=[—U—57+%1. (2.5)
A A

From this follows the known theorem due to Lord Kelvin on the
constancy of circulation in a closed fluid contour. In fact, if the contour
is closed, then points A and B coincide and the right-hand side of equation
(2.5) vanishes. Then the integral on the left-hand side expresses circula-

tion I' of velocity in a closed contour. Since or_ 0, the circulation in this

contour remains constant. o

When a region containing a weightless and incompressible fluid is bounded
by free boundaries s, consisting of a fluid (streamline) and extending into
the region where the fluid is at rest (where ¢ =0), point A can be placed at
%
_2=0.
entire boundary is assumed to be constant, and the potential of mass forces
is zero when weight is neglected, i.e., U = 0. The upper limit of integra-
tion of equation (2.5) can be associated with some fluid particle E at the
free surface s and then the integral on the left-hand side can be treated
as the "potential of particle £." Equation (2.5) yields

boundary s in the far region; consequently Pressure p along the

Dot _ L, (2.6)

Equation (2.6) serves as the boundary condition for any free surface under
the above conditions.
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The elementary length of the trajectory of each surface particle & is
ds' = u*(t 1) dt. If the potential at point x,, y, z, where particle £ is situated
at time ¢, is ¢,, but the velocity u, = 0, and then at time ¢ the particle has
moved together with the free boundary s and arrived at point x. y, z, then the
potential at this point @ (x, y. 2. f) or ¢ (&, ) (these two definitions are fully
equivalent due to the single-valuedness of the potential field) is determined
by integrating equation (2.6) with respect to time:

t A
9.0 = @Gt + 3 [ 0d =0t + e s, (2.7)

& s",
Expression (2.7) is sometimes convenient in the study of the motion of free
boundaries. If the fluid starts moving from rest, it can always be assumed
that ¢, = 0.

Defining impact initiation of a flow as the onset of flow due to the applica-
tion of infinite pressures during an infinitesimal period at some boundary
segment, we conclude from equation (2.7) that the velocity potential of sur-
face particles of an ideal incompressible fluid does not change during
impact.

Impact pressure p at solid boundaries can be as high as desired.
Integrating equation (2.5) with respect to time, and making use of the
fact that impact duration r is infinitesimal while the velocity v over the
integration interval is finite, we derive

1
P =04 =7 (Pig — Pia)

where p, =Spdt is the impulsive pressure. Consequently, the potential

[]
difference at the ends of a streamline can also be treated as the result of
the application of a difference in impulsive pressures at points 8 and A.

5. Equipotential surfaces

The potential ¢ (&, ) of a particle at a free surface s increases with time
(see equation (2.7)), but within the fluid there can exist close to § a surface
1, at which potential ¢ remains constant
(¢ (v) = const). Let us determine the
y a.e) velocity of propagation of surface .
The flow pattern is depicted in Figure 21.
It was previously pointed out that
streamlines [ and trajectories s have
a common tangent at free surface s.
Let 8/ be an infinitesimal segment of
the streamline directed to particle § at
free surface s. Neglecting the quantity

2—7 along this element, we have

0 ¢(§,t)—q;‘=gu(l,t)dl=u(§,t)61

o
FIGURE 21. ag 68—~ 0.
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Differentiation with respect to time yields

Dt

D )
orleE D—g)=p5rwsh =25 20

The difference between the velocities of the ends of element 8 will be

9% =u—V,, where the normal velocity of propagation of surface r is denoted

by V,. By definition, ¢, = const; hence

Do, o) _ Du _
—Dt—_ﬁt—ﬁl +u(u V,]).

Equating the above equation to equation (2.6), we find that g—':él +up—Vy)= -%—u*

orV, = % u, if g—;‘él» 0. Consequently, an equipotential surface infinitely

close to free surface s propagates in the same direction as s, but at a velocity
half that of particles at s.

Theorem XV. The absolute velocities of an equipotential surface
infinitely close to a free surface propagating at finite and continuous
velocities and accelerations have the same directions along streamlines,
but equal half the velocity of surface particles situated on the same streamline.

This theorem has an interesting corollary. If the fluid started moving
from rest, then the velocity potential at the free surface (as everywhere in
the fluid) is initially zerc. In the region close to the body the velocity
potential at free boundary s will change with time (increase), but will remain
zero at an infinite distance from the free surface. Hence surface t, at
which ¢ = 0, is always infinitesimally close to the initial free boundary s,
during all subsequent times at infinity. Since at large (but not infinite)
distances from the body the elevation of surface s over s, is small and the
_particulate velocities u are directed approximately along normals to s,
it can be claimed that surface ¢ = 0 during its motion always divides the
space between the instantaneous position of s and its initial position s, into
two approximately equal parts, as long as the distance between s and s is
small compared with the distance traveled by the body which set the fluid
in motion. Theorem XV makes it possible to construct a net of surfaces
¢ and ¢ in the vicinity of free surface s, if the surface proper and velocity
a2 at the surface are given.

6. Pressure within the fluid
The pressure p at point x, y, z in the coordinate system associated with
a fluid at rest is defined by the Cauchy-Lagrange integral

2 d
S+ +{Eru=ro (2.8)

For a heavy and incompressible fluid S% =% and U=0; if the fluid is at

rest at infinity in such a manner that as r - o we have aal; - 0 and also

¢ > 0 (or ¢-» const), and all of its free boundaries are acted upon by a
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constant pressure p,, then function F() can be treated as constant and
equal to p, ¢. Then this equation simplifies to

=P

rp2r @

ap v? p
wtT Tty

rpoo

Here potential ¢ = ¢(x, 4,2, ), pressure p and absolute velocity v are
determined at a point (x, y, z) stationary in space for the same time t at

whlch is determined. Obviously the pressure at free surface s is p,;

hence the condition ‘%";- 5’;— =0 is another form of the dynamic boundary

condition for points in (x, 4, 2) space which, for given ¢, coincide with
surfaces,

If velocity potential ¢’ is specified as a function of time ¢ and coordinates
x'.y, 7 in a coordinate system moving relative to systemx. y, z, i.e.,
=9, y. 2, f), then coordinates ',y 2 for each fixed point of space x, 4, 2
will be time-dependent and the potential at a point x, y, z will change both due to its
explicittime dependence and due to changes in coordinates x', y'. 2. This must be

taken into account when calculating ﬁ. for substitution into equation (2.8).

Assuming that system x', y, 7 comc1des with stationary system x, y, z at
a given time ¢ and that the components of the velocity at which an arbitrary
point of the moving coordinate system moves relative to the stationary
coordinate system are V,, V,,and V,, we derive for infinitesimal subsequent
time intervals x=x"+ V. ¢, y=y + V,t and z=2 + V,t. Since ¢(x, 4,2, 8) =
=@ (', y, 2.1 due to uniqueness of the potential field and coincidence of the
coordinate axes, differentiation of the second expression as a composite
function yields

oy ap op dx’ oy Jay dp

= I A B & 4
atlx.y,x.l[ a‘|x" PR ox’ dt dy' dt + 0z

.
=

At the time under consideration we have T = "l and similarly for the
other [two] directions; from the previous definition of the coordinates
we have

. , .
eV v, T——v,

The transport {reference-frame] velocity of a point in the moving co-
ordinate system is V, = V,+ox7, where ¥, is the velocity vector of the
origin of the moving system, o is the vector of angular velocity at which
the moving coordinate system rotates relative to the stationary system,
while r* is the radius vector of the point in the x, y. Z coordinate system.
Hence the transport velocity of the point can be expressed in the form

=iV, + [V, +hV, = Vroxr =iV, +@o,—yo,)) +
+ilVy + (Yo, —20,)] + &V, + (Yo, — X0 ).
Finally the equation for pressure, if the velocity potential is specified

in the moving coordinate system, has the following form for the previously
mentioned conditions:

a' d o ‘ 9 ’
T T Vet @a =y = Vi + wo, —Z00) —

—F WVt Wo—xo) + (5 + () +(E)) + 5|, =F0 (2.9
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The prime in the expression for %’?—) means that the partial derivative is

taken of ¢, specified in the moving coordinate system, while the differentia-
tion is carried out with constant values of coordinates «, y. #. It is assumed
that any point of the free boundary at any time is acted upon by a pressure
p — p, = const.

If particle § at surface s is placed at some instant at the origin of the
stationary coordinate system, and one of the axes is directed along the
tangent to trajectory s, then we obtain from equation (2.6)

Dy _ 09 dp ds

Dt T o Tas dt

Since z-;v,— =y and ‘% = u, substitution of these quantities into equation (2.6)
yields a boundary condition for these points of space x, y, z which, at the
time under study, coincide with the boundary. This condition can be

expressed in the form aal; +’% =0 (as was pointed out above).

The particle potential ¢ (¢. / can also be treated as a potential specified
in a moving coordinate system, whose origin is at all times associated with
particle &, while assuming for simplicity that the direction of one of the
axes of the moving system coincides with the tangent to the trajectory.
Formally equation (2.9) then yields the boundary condition

FQE H  dp ds | wr_ Deidn e _
% e @D 0.

This form of the boundary condition is equivalent to equation (2.6), since
by definition

7. Kinetic energy of the fluid

The instantaneous value of the kinetic energy of a fluid bounded by a
surface 3 is

[
T=*%§S‘P§%dz' (2.10)
I

The values of ¢ and g—jl) in this expression pertain to points of instantaneous

location of boundary surface I at the time for which the energy is cal-
culated; the sign convention is such that the normal directed into the
fluid is positive. If the fluid fills an infinite half- space and its motion
is induced by a body moving at the surface, one must select as this
surface the free boundary s, wetted surface s, of the body and some
surface s., lying at infinite distance from the disturbed region, ex-
tending from the free surface and bounding the fluid region under study.
By estimating the order of magnitude of the reduction in ¢ and
% and the order of magnitude of the growth of surface s, with increasing

distance to it, it is shown that the energy integral (2.10) taken over this
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surface can be as small as desired, if the value of r. is sufficiently large.
Hence in the cases under study the integration extends only to surface
s 45, =2,

Equation (2.10) is usually derived by means of Green's theorem (see
below and also /10/), but it can also be obtained from simple considera-
tions of mechanics (Figure 22). Let us assume that region % is simply
connected and the fluid motion within it is potential. Consequently,
region Z contains no sources or vortices, and each streamline may pass
only from one point on the boundary to another. We consider an infinitesi-
mally thin flow tube which defines an area element 8%, at its origin at the
inner boundary, while the absolute fluid velocity at this point of the boundary
is v. At the point where the tube under study again arrives at the boundary
it defines an area 53, and the fluid velocity is v,. Denoting an element of
flow tube length by &/, the velocity by v and the cross-sectional area of the

2
tube by 8F, we can express the kinetic energy of mass gbdl/6F as (p8i6F) %
The continuity equatiogl yields v,8Z,cos (U;\nx) = 08F = — 1,83, cos (Uz.,\ﬂz): where
0 -~ . : .
al"‘ = v,cos(v,, n), while Svdl =¢,—¢; consequently, the kinetic energy of the

fluid contained within’the entire flow tube is

L %y 50 o n ¢, %%
7(9, — @) ‘;6~= ——7%3521—’2“{?2%‘522»
g

0

FIGURE 22.

Integration over the entire surface £ includes surfaces Z, and I, and
formally yields equation (2.10). However, in some cases it is convenient
to use the formula ‘

99,
T=_%”(¢1_%)a—nld2. (2.11)
5
where, for example, ¢, and %—‘i‘ pertain to the solid surface, while ¢, applies

to the ends of the same streamlines emerging at the free surface. In this

sense equation (2.10) can be regarded as the energy integral over the
flow tubes.
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8. The energy equation

The energy equation for an inviscid fluid mass is

D _ 2.12
2T +U) = SSpV,,dZ. (2.12)
T

Internal energy U in the cases under study is the potential energy of mass
forces and the deformation energy of the fluid. For a weightless incom-
pressible ideal fluid U =0,

It is of importance that the surface in formula (2.12) bounds some fluid
of constant mass which moves together with the boundaries of £, since the
fluid particles do not penetrate these boundaries. Hence V, is the normal
velocity of the boundaries proper of region T (positive along the inner nor-
mal), while p is the external pressure at these boundaries.

Since the fluid is incompressible and there is no mass flux through sur-

face ¥, the volume of closed region £ should remain constant and 55 V,dZ = 0.
b

Obviously, the constant pressure p, acting on all the boundaries of £ cannot
change the kinetic energy of the fluid mass, and so only the excess pres-
sure p—p,=Ap is important in (2.12).

As in Section 7, it is shown by estimating the order of magnitude of
the reduction in p and vV, with increasing distance from the center of dis-
turbances, that the contribution to integral (2.12) of the parts of surface
Z located at infinity is infinitesimal.

By assumption, excess pressure p—p, is nonzero only at s,, the wetted
surface of the body. Suppose some central point, fixed relative to the
body surface, moves with velocity ¥, while the angular velocity of the
body is w, then the normal velocity of point v on the body surface is

(W, +ax7)=V,. Informula (2.12) it is clear that §pV,.dS=5.(P—Po)’_‘(V0+

- - e - _ %

+ oxnds= PV,+ Mo, where P is a force vector, while M is the momentum
vector of the pressure forces exerted on the fluid by surface s, of the body,
reduced to the above central point.

Thus, (2.12) yields for a weightless incompressible fluid (U = 0) the
energy equation

- = PV + Mo, (2.13)
which expresses the law of conservation of energy (the work of external
forces is equal to the rate of increment of the fluid energy). For an
incompressible weightless ideal fluid the entire energy can only exist in
the form of kinetic energy T.

Equations (2.12) and (2.13) for an ideal incompressible fluid are equi-
valent to equations of dynamics of a system of material points with ideal
constraints. However, these constraints are not always holonomic.

9. The momentum theorem

The momentum theorem for that part of weightless fluid bounded by
surface T which moves together with the particles has the same meaning
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as for a system of material points, the motion of which is studied

in theoretical mechanics. Denoting the principal momentum vector

and the principal vector of the moment of momentum [angular momentum]
of all the particles within region £ by K and K,,, respectively, and assum-
ing also that ¢,4% = d3¥, we obtain

%=ig(p_po)dg._ d_flm_=jj(p_po)(;xdi). (2.14)

The right-hand sides of equations (2.14) express the sums of external
forces and external moments acting on the fluid mass bounded by fluid
boundary ¥, which reduce to integrals of pressure forces and of moments
of pressure forces at surface 3.

The linear and angular momenta of fluid within volume 4Q, which is
located at the given instant at point r, are respectively dK = gradgedQ and
dK,, = (r xgradg)edQ. Hence, for the entire region under study

l?:gSSSgradq»dQ: 7m=QSSS(7xgrad(p)dQ.
° b

The Gauss theorem ylelds

2 =— 7 xd2),
S[gj (r x grad ) dQ Szg(p(rx )

where ¢ is the boundary value of the velocity potential at the time under
study.

For the motion of a body at the surface of a fluid, treated below, one
always encounters parts of free boundary s and wetted surface s, of the
body, at which the fluid particles move with high velocities, which de-
crease when moving away from the surface and tend to zero at infinite
distance from the region of disturbances. It will therefore be assumed
that the closed surface 2 consists of surface s,, surface s which starts
from the surface of the body and extends over large distances from it,
where surface s is closed by an infinitely removed part of surface %,
which is designated by s.,. We now clarify how the momentum theorem
is to be used in these cases and what is the mechanical meaning of
individual terms of the general formulas (2.14).

The Gauss theorem yields

K=o {{{eraded = —c({wds—e([ods = B +Be. (2.15)
Q 3,

s oo

Momenta B and B., of external forces pertain respectively to surface

5, +5 and se, and are equal to corresponding integrals in formula (2.15).
The velocity potential ¢ is determined from equation (2.7) by integration
with respect to time. Assuming that the motion started from rest at

t =0, when the potential of each particle was zero, we derive the potential
of some particle on the bounding surface at time ¢:

— P ! 2
@——F +-;$udt.
[
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t
Here pi=5‘(p-—po)dt is the impulsive pressure.

At the0 infinitely removed part of surface s, we have

B.. =—g”(pds_g5p,ds—gg( j ’dt) (2.16)

In the second integral of the right-hand side the particulate velocity u
decreases with increase in distance r from the center of disturbances not

| . . .
slower than -, while the area of surface so increases as a function of 2.

Consequently, for a region of disturbances of arbitrary size it is always
possible to select within an infinite half-space large distances r such that

this integral, which decreases not slower than —rl? will be as small as

desired for an arbitrary, but finite time ¢.
We now subtract B, from each part of equality (2.15):

K-Bw=—QSS ods = B. (2.17)
sp+s

By the initial condition, surface £ moves together with the fluid; con-
sequently it bounds a constant fluid volume. Surface I is acted upon by
constant pressure p, and additional variable pressure p — p,, which is
determined by the motion of the boundaries. The impulsive pressure p,
at free boundaries s is zero. The integral of excess pressure over the
solid boundaries of the body reduces to the force

5 — DB
P=5~S(p—po)d3= Dr
S
with which the body acts on the fluid. The pressure force at an infinitely
removed part of the boundary applied externally is P, = %f‘”. Thus, dif-

ferentiation of (2.17) yields the final formula of the momentum theorem in
the form

— - i D _
z%‘K—Bw>=—QD%SS‘P"S=Bz=P~ (2.18)
Sp+s

The magnitude of the actual momentum K of all the fluid particles in
region X, as the momentum of reaction forces ‘B., external to ¥, depends
on the shape of the removed part s. of the boundary and in this sense they
are indeterminate. Hence, the "momentum' vector, or the momentum of
pressure forces applied to the fluid through the surface of a body moving
on it, is determined from expression (2.17) and may not equal the actual
momentum of all the fluid particles.

It is similarly shown that the vector of the '"'moment of momentum' or
the impulsive moment of external pressure forces on the fluid relative to
point 7 =0, is

"

Tm=_9'ﬂ‘ (P(;de—)= S’[SS (p_po)(;xdg)]dt=(j/‘—_4!11~
H

spts spts
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It also follows from this definition that
P= Szj (p—pyds M= jzj(p—po)(?xdf).
According to boundary condition (2.6), we have

'P'=—Q%SS ods = SS(p—po)dE.
[

Spds

The momentum theorem for steady flows will be applied below to
specific problems.

10, Zero-potential surface

During any submersion of a solid body into a fluid initially at rest,
for which we assume at zero time (¢ = 0) that ¢ = 0, there will exist at
all its points during each subsequent time instant (f > 0) within the fiuid
a surface 1, at which during the
entire motion ¢ = 0. At time /=0
t>0 r free surface s is a surface at which
vy VGJ=7 ¢ = 0. During subsequent periods
positive potentials will be "'accumu-
, 4n §t>0; 5’>00 lated" at surfaces; hence, accord-
T = S S ing to Theorem XV, surface ¢ =0
0 LA y=0 2 ’ x from the very start will move in the
- same direction as surface s, and at
— / all times will divide the fluid region

t>0

which rose above the initial level
into two parts: one between s and
] 1, in which ¢ >0, and another,
/ where ¢ < 0 (Figure 23),
The pressure at surface t
(where ¢=0) is defined by equation
(2.8). Since at surface t we have
Py
/ 3 =0,
o _"‘;'_""—v..u_i. (2.19)
FIGURE 23.

When the pressure within the
fluid is greater than or equal to
p,,» we derive that the normal velocity of transport of surface © proper is

Vy > .12_ v, where v is the fluid velocity at surface 3. Here it is clear that

velocity v = gradp is orthogonal to surface t. Consequently, for any con-
tinuous submersion of a body into a fluid initially at rest, surface 1, at
which ¢ = 0, is always contained within the fluid and intersects the surface
of the body or inner free boundaries. The latter statement will be
illustrated below.
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Suppose a hemisphere with radius r - o is drawn from the center of
disturbances at the free surface within the fluid in such a manner that it
intersects the free surface; on this hemisphere, by definition, ¢ 0.

If surface 1, at which ¢ = 0, passes from the line of intersection of the
hemisphere and the free boundary such that it does not intersect the body
or the inner free boundaries, then the hemisphere and surface T bound a
region with fluid at rest; consequently, the velocity of surface t proper
and of the fluid at it will be zero. Then surface v will be equivalent to a

solid surface, at which z—f =0, but it is possible that ¢ 0, which is

incompatible with the definition of surface t and the entire formulation
of the problem.

When the body is extracted from the fluid at rest (without break in
continuity) positive potentials arise at the free surface, at the surface
of the body, and everywhere within the fluid; surface ¢ = 0 in this case
no longer lies within the fluid.

We now clarify the location of the maximum pressure point. Euler's
vector equation in the moving coordinate system t, n, associated with a
point on surface t, can be expressed in the two-dimensional case as two
scalar equations:

where o is the angular velocity with which system t, n rotates relative
to the stationary coordinate system, which at the time under consideration
coincides with axes t, 7.

When v — Vy, =0, particle §, always remains at surface t. If then the
trajectory of this particle is rectilinear and it moves with constant velocity,
3_‘; =0, o=0; thus g—’: =0, %’;’1 =0, and particle §, is always situated at
the maximum-pressure point. It is assumed that there are no singular
points anywhere within the fluid, the excess pressure is positive, surface
1 is continuous, has a single-valued curvature and extends from the sur-
face of the body to infinity, where it coincides asymptotically with the
initial free surface. These conditions, in particular, are satisfied by
flows with self-similar and steady free boundaries.

Theorem XVI. For uniform motions with self-similar or steady
free boundaries one of the pressure maxima is always located at the zero-
potential surface and at that point on this surface where the transport
velocity of the surface is equal to the absolute velocity of the fluid.

11. Mass, momentum and energy fluxes through the
zero-potential surface

To fix ideas, we shall consider the case when surface t(p = 0) lies

within the fluid, while the free surface moves outward and extends from
particle §, to infinity, where it coincides with the undisturbed level. We
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fix at the free surface particle ¢, approached by streamline [ which is
orthogonal to surface t and intersects it at point 1, (see Figure 23).
If the volume of the region bounded by surfaces 1. [ and s is denoted by
dQ,

Q,, then - = S(u — Vyldr; however, the limit of integration can be

variable, smce streamline | may intersect surface v in different points
at different times.

Momentum B, of the fluid within region @, increases due to transport
of momentum ¢(v— V) vdvdt and work of pressure forces on surface r,
equal to (p, —p,)dvd:. As a result, equation (2.19) gives

dB v: o ==

This formula makes no allowance for increase in momentum due to pressure
forces acting on surface /, between t and s.
The increment of kinetic energy T, in region Q, is also composed of the

energy transport g — V.,)%fdtdt and work of pressure forces (p, — p,) vdzdr.
Consequently

‘f_cqgv Lo =E (2.21)

A

In many cases of submersion of bodies and their motion at free surfaces
it is possible to locate (using additional considerations) a region of possible
location of surface ¢ =0 and certain features of this surface. Then for-
mulas (2.20) and (2.21) sometimes provide useful results.

12, Green's theorem
Omitting the proof /10/, Green's theorem for two arbitrary functions

¢ and ¢, which are continuous and have continuous first and second
derivatives within a connection region @, bounded by surface ¥, can be

expressed as
9g_ Op Oy |, dp d¢'  Op O
SS(P dza—SSS(ax 0x+0y 0y+52-‘71_)x
xdxdydz - SSS ¢Ag'dxdydz;
09 o __ d¢’ dp
S“S"p on dZ = SSS(@.: dx 6y 0y+$ 02))(
x dxdydz — SZU ¢’ Agdxdydz. (2.22)

If ¢ and ¢’ are velocity potentials of two different irrotational flows,
then for an incompressible fluid Agp =0 and A¢’ =0, The equality of the
first integrals on the right-hand side yields the relationship

Sgw%“;—'dz=ggw"%dz. (2.23)
X
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When ¢ =¢’ and Ap = 0, each of equations (2.22) upon being multiplied
by —£, will yield an expression for the kinetic energy of the fluid in
region ¥ in terms of values of ¢ and % at the boundaries (see equation (2.10)).

Using equation (2.23) we can prove that the effect of infinity due to any
local disturbance at the free surface is equal to the effect of a doublet
placed at the center of disturbance (Figure 24).

\ !
\\ e
1

FIGURE 24.

We limit ourselves to the two-dimensional case. Potential 9’ can be
represented as Inr, since Inr’ satisfies the Laplace equation A(lnr)= 0 if
r'is the distance from point A (Figure 24) to any point of space x, y (within
as well as outside the fluid). By assumption, point 4 lies in fluid-tilled
region /, and consequently when integrating over boundaries T of this
region point A should be excluded. This can be done by drawing a circle
of radius r, with center at point A. The contribution of the first integral

around this circle, if 4%, = rdo, will be 5 &p’l—,rldm —-2np, as r, -0, and the
1

W
corresponding contribution of the second integral will be zero, since
there are no sources or sinks outside circle r,. Integration of (2.23) only
over the boundaries of region / gives

1 d¢’ 1 , 09
¢, = —ﬁé‘q)-ﬁdz-i-ﬁg(p % 4.
z

Function ¢ is harmonic within region /, as well as within region //
external to the fluid, and so allowance must be made in calculating ¢, that
region // with boundary Z' also has a potential ¢. But for region /] point
A is an external point and for any point of the boundary of region I/ the
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value of radius r at point 4 is finite. It therefore follows from (2.23) that
1 dg’ , 0(p ,
0= — g | Graz + S ¢ o5z
K4

To calculate ¢, the last two expressions should be added. However,
when integrating along the contour of region // it should be traversed in

. . . 9
the same direction as the contour of region /. But 4- = —7"".,, hence,

reversing the direction of traverse of contour //, after replacing 53—, by
'oa”n» 9, can be calculated by traversing s, +s* twice during the integration.

Substitution of the values of ¢ and % at the boundaries of the disturbed
region into the integrals gives

4 J
=-——5'tpq)ds+—5cp "')ds (2.24)
Sp+s s

In the preceding formulas we omitted integration over circles s, and
s,. However, the radii of these circles can be made as large as desired,
and the value of ¢, cannot depend on the magnitude of these radii as re —+ oo,

. ag’
Hence in the first integral we should have ¢_ - C(=0), since 7% - ;l—.dsm= rdo.
In the second integral, since g_=Inr'>o as r_ - oo, 5%‘2—:15 - 0; here this
Soo

integral should decrease with increasing r, much more rapidly than the
increase in Inr,. Thus, integration over all the infinitely far boundaries
can be dispensed with by setting the additive constant for ¢ at infinity
equal to zero.

All these considerations are similar in the three-dimensional case,
for which ¢’ should be represented by function 1/, The expression for
the potential at point A then takes the form

1 rf g
=g ([t g [[o s (2.25)

Spts s

Let us find the first term of the series expansion of ¢ about point A at
infinity.

In the two-dimensional case r = V{x +£) +(y— n)?, where x and y are
coordinates of point 4; ¢ and n are the coordinates of the contour of the
disturbed part of boundaries s, and s. When for the disturbed region
£, n&r', we have approximately, for ¥~ + o and ¢ -0,

r’:r(l—--’fTE-y'lﬂ-f-...); lnr’=lnr—’:—§'—y'l,+....

where r =V + 2.

Since distance r from the origin of coordinates x, y to point A is constant,

o' x O L_dn
an ” dn % on '

® Here, as above, 5, are the boundaries of the body, s denotes the free surfaces, and 5o, designates surfaces
at infinity; = Sp 5+ 5o
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where , -
gﬁ— =cos(n,x)y and -0—',“- = cos (n, y).
Substitution of these expressions into (2.24) yields
~ - i
= —:‘- S (p(:—,cos(n. X) + %cos(n. y))dS—T S (t—% +%) %?Tds,
Spts el

If the flow is symmetrical about the y axis, then scos(n/,\x) and & at
symmetrical points are of the same magnitude and opposite sign, while

¢ and ‘-’03:; are equal. We denote by ¢ the angle between the negative y direc-
tion and the direction of r; then —% =cos®. The momentum of the external

force, or the momentum of the fluid along the axis, is By = —0 5 @cos(n, y)ds,

while the streamline element is dy = -—ds For the two- d1mens1ona1 case
4
%= ( + S ). (2.26)
Sp+s

If the y axis is the axis of symmetry of the flow, then in the three-

dimensional case, using formula (2. 25) we find similarly
00= S5 (24 | nav) (2.27)
et

We recall that the positive directions in (2.26) and (2.27) are those of
the normal and of the normal velocity directed into the fluid. When the
fluid is acted upon by forces along the negative y axis, B, <0, and the
integral in parentheses is also negative. The integral in (2.26) and (2.27)
can be termed the static moment of the streamline relative to the undisturbed
level.

Theorem XVII. The effect of any local motion of the boundaries of
a fluid-filled half-space at distances larger than the disturbed region and
large compared with the actual dimensions of this region, is equivalent
to the effect of a corresponding doublet,

For example, if a half-submerged cylinder of radius R floats on a
horizontal free surface and acquires downward velocity vertical velocity Vv
due to impact, the momentum component along the y axis will be B =

= — ﬂ?R°QV (the positive y direction is upward). In integral (2.26)

M = — Rcos®; dp = VRcos8d8, at surface s we have n=0. Hence
1
Snd\p = — VR’S cos? 0d0 = — % R¥W.
by n
)
— VR3cos 8,

The potential at a far point within the fluid is ¢= the expres-

; ;
sion for ¢ is the same as for a cylinder performing translational motion
within an infinite fluid.

For asymmetrical flow the doublet axis is not vertical. It can be
shwon by similar considerations that the moment of impulsive forces at
the boundaries under the same conditions will reduce to a higher-order
doublet, However, this point is not considered here.
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Chapter Three

ELEMENTARY CASES OF FREE-BOUNDARY FLOWS

Spherical and cylindrical flows of an ideal incompressible fluid are
the free-boundary flows which are simplest for study. If flow starts from
rest due to the application of normal pressures at the boundaries, it is
potential. According to TheoremsIlII and IV, free boundaries inthese cases
are orthogonal; it follows that the velocity potential at each point of a free

boundary at a given time has the same value %f = 0. Many of the conclu-

sions and methods presented in the previous chapters can be illustrated
and developed by a study of these cases. At the end of this chapter we
shall consider flow with steady free boundaries which arises, in particular,
on steady planing or on developed cavitation. Some of the presented
results are important in their own right, while others illustrate the
material of the first two chapters, but sometimes result in a new treat-
ment of physical phenomena.

FLOW WITH SPHERICAL SYMMETRY
1. Spherical flow

Let us imagine an infinite region, filled with an incompressible,
weightless ideal fluid, which contains a spherical cavity R = R (¢) filled with
gas at pressure p. At infinity the pressure tends to the constant value
p —» p, = const and the fluid is at rest (grad ¢ —~ 0). Since the density of the
gas within the sphere is negligible compared with the density of the fluid,
the motion of the gas within the sphere is neglected.

Initially (¢ = 0) the entire fluid was at rest and the velocity potential
may be assumed to be zero (p=0) at any point in the fluid-filled space.

The spherical symmetry of the flow makes it possible to represent
each fluid particle & =r as a spherical layer with surface 4n§’ and thickness
8¢ at the initial time. Denoting the radius of this layer during subsequent
times by r =r(f), we can express the particle volume for these times as
4nridr|, = 4nk%t|,_,. The continuity equation in Lagrangian form expresses

the physical fact that the volume of each incompressible-fluid particle
remains constant during motion. Consequently

B (rtr) = 27 &7 41187 =0,
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Taking the limit as 6 - dr and ér — dr and integrating, we find that
d(rr® = 0 for each time instant and for all the particles; thus the particulate

velocity is r=29 and the particulate velocity potential is ¢(r) = —Crdr=
=) Y o (n

- __.i}’l. These expressions are also valid for a surface (r = R) par-

ticle, for which the spherical coordinate is R =R(#). Hence A(}) = RR* and
the velocity potential is ¢(r) = -—i'R—ﬂ; the potential at the free surfacer =R
is ¢(R) = —RR. Pressure p(r) can be determined directly from equation
(2.8) by referring point A to infinity.

34
The total derivative of the potential has the form
Do (1) RR® + 2RR RR? -
%I’ = r + r2 r

Since by assumption 7, > oo and p, - p,, and also because RR? =%, we have

M:‘L’)‘?ﬂ=(2k3+Rk)_R___;}ﬂ' (3.1)

0
At the free surface r=R

2@ _p®R—p_ 3 oy RE (3.2)
In the Eulerian treatment /10/ this problem amounts to expressing the
flow through any stationary sphere of radius r' as 4xr'd,, where v, =v, (7', #) is

the radial velocity. Since the continuity equation is now expressed in the

stationary coordinate system 3‘3—, (**v)=0. From thisv = ir('—) and we

ol
again derive ¢(.f) = — 55-. It is clear that the velocity and pressure

potentials for point ' =r do not depend on the point of view from which
the flow is observed.

2. Inertia flow

This case is possible when the pressure within the sphere is p(R) = p,,
i.e., is equal to the pressure at infinity. The equation of motion of the
free boundary is obtained from equation (3.2) by setting its left-hand side
equal to zero. Separation of the variables R and R yields the condition
RPR? = const; this constant can be defined as R3Ro, if R, and R respectively
are the initial sphere radius and the initial radial veloc1ty of 1ts boundaries.
Excess pressure Ap(r) within the fluid is obtained from equation (3.1) by
subtracting from it the right-hand side of equation (3.2) set equal to zero;

/é r?

here making use of the continuity equation = W€ obtain
r
g () _ Y pa(R _ R
Rl (F-T). (3.3)

If we move from the boundary of sphere R along its radius, the pressure

will first increase, attain a maximum at point —1—5- = ‘fff and then, as R/r
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decreases further, will decrease tending to zero, as ir - 0 when r - co.
We note that the distribution of pressure Ap, along r does not depend on
the direction of velocity R.

Omitting the restriction that Ap(R) =0 and proceeding as in the deriva-
tion of formula (3.3), we obtain

b0 _ R0 LR R (3.4

The positive or negative pressure within the sphere propagates through
the fluid as R/r, and positive pressure Ap, (n (obtainable from (3.3) by
substituting into it velocity R, corresponding to the actual motion of the
boundaries) is everywhere added to it. The pressure distribution is
depicted in Figure 25, where

~ -~ ~ ~ R ~ R 2A R~
Ap = Ap, + Apy; Apl=£;—(7‘)‘: ap, = 2. 22B _ R ATR).

r QRa r
24
ay =P}2
075
7% | 8p(R}=0
\ w0
0.5 N - 2p(R)<0 .
/\%/ 23(R)=025
85(R)=—0.25
0.25 [(\_ >
s
L IQT \“‘ — »-__—_-
0 s ______Z{__._:
A —
s
—-025_ ¥
0 2.5 5.0 75 10.0 L
FIGURE 25.

3. Equipotential surface

Let us assume that potential ¢ on a spherical surface of radius r (0

dr .
remains constant, the absolute velocity of this surface is V, =—% =r, and

N dt
the velocity of fluid particles at it is v, = 22 < ®® 11 order that potential
. T
®
@ =— —’3% at sphere r, () remains constant, it is required that the condition
dp __ RRV:2RR* | RRY .
i e Tz =0




be satisfied, whence, using equation (3.2), we derive

- 'L';('_ 8p R)
To=Rglg+ ka)'

This expression corresponds to Theorem XVI if Ap(R)=0. Under this
condition the equipotential surface which is infinitely close to the free

surface (% - 1), propagates in the same direction as surface R, but at

a velocity equal to one half of R. When moving by inertia ( Ap(R) = 0) the
rate of propagation of the equipotential surface is equal to the fluid

3
velocity at this surface provided that (%) =2; if % >31/§, the rate of

propagation of the corresponding equi-
potential surface will be higher than the

5—", / Iy particle velocity at the surface.
) ]
ﬁ %‘é % The potential ¢ (R) = — Ci;%; conse-
ol §Jg - / quently, as the sphere expands by inertia,
) D 3 its absolute value decreases. It may be
08 / imagined that free surface R overtakes
K the equipotential surface and "engulfs'
04 1 i it, with the potentials of both surfaces
\\ L becoming equal at the time of "'engulf-
0 R ment." The velocities of the equipotential
1 2 3 4 7!{: surface and of the fluid as a function of
r/R are shown in Figure 26,
FIGURE 26.

4. Kinetic energy

The kinetic energy for the entire fluid can be calculated either by
direct integration with respect to spherical layers, or from (2.10):

T=—% S @ (R) RR*dw = 2noR*R?. (3.5)

4n

The spherical coordinate r of each particle is determined from the con-
tinuity equation r* — R® = const. Consequently, the entire fluid mass can
be treated as a system of material points with holonomic constraints,
with radius R serving as the generalized coordinate of a system with one
degree of freedom.

We denote the generalized force referred to coordinate R by Q. The
Lagrangian equation of the second kind for generalized coordinate R has
the form

2l = (3.6)

Substitution into formula (3.6) of the expression for the kinetic energy
from (3.5) yields the equation of motion

4nR% (-2 R* + RR ) = 4aR*p (R = Q (3.7)
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The generalized force has thus been found to be the total excess pressure
at the inner boundaries of the sphere; naturally, equation (3,7) is identical
with equation (3.2).

If an adiabatically expanding gas is held at ¢t = 0 within a sphere with
R =R, and R = 0, then the internal pressure will be defined by the adiabatic
equation pR¥ = p R with index x. Since Vo=R and dR = Rdt, integration
of energy equation (2.12) for a weightless fluid (U =0) yields

R
2

. d Ry \3x
R’=W5{p1 (—R—‘) — pof RR. (3.8)
R,
Substitution of R? from (3.8) and of Ap(R) = p, (%)3”_ p, into equation (3.4)
gives the pressure distribution within the fluid at each point r for given R.

CAVITATION IN JETS
5. Two-dimensional expansion of a fluid annulus

I.et us imagine a two-dimensional flow when the region occupied by the
fluid is bounded by two concentric circles: an inner circle with R, = R ()
and an outer circle with Ry =R, ().

We denote the distance from a particle to the center by r = r (), where
R, <r <R,; the pressure at the inner and outer boundaries are designated
respectively by p,and p,, and p,~p, by Ap. The volume of fluid between
particle R, and r remains constant; hence

B — Ry =207 —R,R) =0,

whence r = RaRs and the potential difference is expressed as

P

PN —gR) =\ rdr= RaRaInR—'.

Dy

Substitution of the expressions for potentials and velocities into equa-
tion (2.5) yields an expression for the pressure at any point of the fluid:

p(n—p(R)
)

.. . [ . R2
= — (R, + RYIng- + 7R (1 - 2). (3.9)

The kinetic energy of the entire fluid at time ¢ is calculated most
simply by integration along flow tubes (see formula (2.11)):

. . R
T = — £ (@R — @ (R Ri 2R, = ngR: R2In 1. (3.10)
If velocity R, and pressure difference Ap are finite, then
2
y — Fq a . N . R
{p'—p— —%R’(l — - )} ! decreases without limit as 5~ —~oo. Hence,
Q a R; lnRL R,

a
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when the fluid extends to infinity (R,~eo), while inner boundaries R. have
nonzero velocity R,, then for an arbitrary value of Ap the expansion of the
cavity is governed by the expression R R, + R = 0 Solving this equation
gives R,R, = const. It follows from (3.10) that 1f R—- — o0, then T, the kinetic

a

. R .
energy, also tends to infinity, since In R—"—»oo. Hence no finite externally

applied pressures operating over a finite time are able to change the pres-
sure at the inner boundaries of a cylindrical cavity in an infinite fluid.

6. Motion of a thin fluid annulus

We denote the annulus thickness by 8§ (§ = R,— R,), and assume that ratio
8/R; is very small. Retaining terms containing 6/R to the first power, we
derive the continuity equation for the entire annulus in the form S= R§ = const.
The pressure difference Ap = p,— p, at the boundaries is found from (3.9) to

be 22 — —RBs. Elimination of § from the last two expressions yields an

approximate equation of motion for the annulus,

R+ 2 R=0. (3.11)

n

Let us consider a circular cone with small vertex angle 3 ~ f, placed

with its longitudinal axis symmetrically into a thin jet of diameter d and
velocity V, (Figure 27). Then a thin annular jet appears past the base of
the cone and, if the internal pressure is lower than the external pressure,
it will form a thin-walled cavity. Cavities of this kind are in fact some-
times observed; in the rear part, where the jets merge, the flow is no
longer potential, and gas bubbles are expelled from this part of the cavity,
with the result that the pressure within the cavity is lower than the outside
pressure,

R
—_———————— —————
v,
2| A =
= < % |
7#@7/77 < - - 0 —
{// 7 & _T/_ YT IV A x
h = d
| | ® | o —2E Bt K=V I
S s L
4 yig u m
FIGURE 27.

Each length element dx of such a cavity can, to a known approximation,
be treated as a thin cylindrical annulus, the motion of which in the radial

direction is defined by the equation R+ —g—g R = 0 with the initial conditions
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R=R .
(=0 { . ", where R, is the cone base radius, while R, =V sin (%——5). The
R=R,

origin of the longitudinal axis of symmetry (x axis) can be placed at the
center of the cone base, in which case ¢t= -f,— approximately, since

cos ("T— b)z 1, and the absolute velocity along the outer surface of the

jet is constant by Bernoulli's equation. It follows from the continuity
equation that the area is S= -‘-181. Denoting the cavitation number by

c =%, solving the equation of radial motion of the annulus and substituting

the above quantities, we can derive an approximate expression for the
cavity contour,

n
sin{+5 —B
R(x) _ (2 ) . x Ro %
i a7 Sm(2V0d)+dCOS(2V07), (3.12)
where R(x)is the inner radius of the cavity, while the outer radius R 4 § of
the cavity can be found by calculating & from the continuity equation

2nS = 21R$ =JT7 d®, It is clear that formula (3.12) was derived by neglect-

ing the difference in the tangential velocity at the inner and outer boundaries,
and, consequently, this conclusion is suitable only for low ¢ and sharp
cones; here equation (3.12) cannot describe correctly the shape of the
boundaries in the trailing part of the cavity, where R/V, is no longer a

small quantity.

If the x axis is vertical and the velocity within the jet is low, then
consideration must be given to gravity forces, which in this case is
relatively easy. In our theory the radial expansion of an elementary
annulus is treated as being independent of the longitudinal drift of this
annulus and from these considerations time ¢ is expressed in terms
of x. Denoting the velocity at the cone base by V, and retaining the
origin of the x axis at its previous location, we obtain from the free-fall

equation
=Vg4+ =Y %x _
x=Vd+5 ort=- 1+ V2 .
Hence
. n
sin[{& — P 2
R (x) (2 ) . ( [ 2x ]V0>
=————sin{2Vo 14+ == —1|—)+
d 2¥o v3 gd

R —~ T2 v
+T°cos<21/0[]/ 1+73—1]g—d). (3.13)

Equation (3.13) reduces to equation (3.12) if V, - oo or if the Froude
and 2
&d gx
of the fluid also when the axis of the cone is oriented arbitrarily relative
to the terrestrial vertical. For this it is possible to use (with the same
degree of accuracy) the above principle of '"independence of expansion'

Vo

numbers

are high. It is not difficult to determine the motion




of each transverse layer of the fluid for its longitudinal motion. It is
evident that the center of gravity in a gravitational field will move in
space in the same manner as a material point with initial velocity V.

7. Drag and the reentrant jet

The forces acting on a cone streamlined by a thin jet and the diameter
of the reentrant jet can be calculated by means of the energy and momentum
theorem. As to the reentrant jet we note that, according to Theorem X,
the inner boundary of a cavity, when the cavity is considered in its absolute
motion relative to a stationary fluid column, will be a steady surface,
which cannot be closed. Hence, a reentrant jet, whose cross-sectional
area is denoted by F;, must be directed from the trailing end of the cavity
to its leading end.

According to Theorem V, the relative particulate velocity V; along the
inner boundaries is constant. However, since by assumption pressure p,
within the cavity is lower than pressure p, in the free flow, the relative
particulate velocity V, =V, at the inner boundary is higher than the particulate
velocity at the outer boundaries, where V,=V,, i.e., it is equal to the
velocity in the jet {or equal in magnitude to the transport velocity in the
absolute motion of the cone relative to a stationary fluid column). Velocity
V., can be obtained from the Bernoulli equation constructed for a stream-
line passing through a far point ahead of the cone and along the cavity

2 2
boundary; it is found that p,— p, = -%/3 (V% - l)or Ve=V,V1+0. The
absolute relative velocity at any point in the flow is V, =V, 4 v, where y, is
the additional velocity; at the inner boundaries v, =0v,=V, — Voz—] av,.

We now draw control surface I — /1], associated with the cone (see
Figure 27), moving the bases of this surface far ahead of the cone and far
back from the cavity. It is clear that the kinetic energy of absolute motion
of the fluid (column stationary, cone in motion) within control surface
I — 111 increases only due to energy transport by the jet toward the cone.
Denoting by X the force which overcomes the drag, we obtain from the
energy equation

T V, Va2
& = XV, = ViF. (__0+T~_’ — FeVapo— i) = [F Vi (Va + Vol Vo =22 Vs,

where oV,F. is the mass of fluid passing per unit time through the cross-
sectional area of the reentrant jet, i.e., through surface // in the direc-
tion of the cone, while V, + Vv, is the absolute velocity of these particles,
equal to the sum of transport velocity V, and the relative velocity V,; the
jet moves in a region with pressure p, <p,, which results in the appearance
of the term F_V,(p,—p,).

We now substitute in the last equation the above expression for velocity
V. and thus derive the cross-sectional area of the reentrant jet,

X ) X 1
Vi Vitoli+VT+al 2V} 1+%a
¢

Fe= . (3.14)

>0
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It is assumed here and subsequently that the reentrant jet does not
reach the base of the cone and is somehow removed from the flow region.
Actually, however, it breaks up at the rear part of the cavity into droplets,
which are deposited on the inner boundaries of the cavity and are carried
away from it by the flow. The loss of gas bubbles from the cavity is
associated with this breakup and ejection from the cavity of sprays from
the reentrant jet. Hence the flow shown in Figure 27 can actually be
obtained at relatively low V, if gas is continuously supplied to the cavity.
But then the jet in the rear part of the cavity is replaced by foam which
is carried away by the flow, and the flow in the rear part of the cavity is
no longer potential due to mixing of the gas with the fluid.

Applying the momentum theorem to the relative motion of the fluid
through control surface / — [/ on the assumption that the jet is removed
from the cavity within surface /I — I/l and exerts no force on the cone,
we can derive an expression for the drag of the cone. In fact, denoting
the cross sections of the control surface by Fi = Fy, the flow cross
section by F{ and F;; and the maximum (frontal) cross section of the
cavity by S,, we have

X=Fov:4+Fp,— | ey +vpdf = p,aF.
Fll FII

The pressure integral in plane // is composed of pressure p,, acting
on area F,— F,,—S,, the pressure integral over the jet cross section,
which is obtained from the Bernoulli equation

dF = ¥ _ o
Pudl =) 1py+ ———5 (V, +-v* |dF,
Fl Fll

and, finally, the pressure p, in the cavity, acting on surface S, =nR?,
Substitution of these expressions for calculating the pressure integral
together with the continuity equation FV, = S (Vy+v) dF into the preceding
Fi
expression for the drag X, we obtain the final expression for this latter
quantity:

2
X = (g —pny— | S aF.
Fi

(3.15)

We note that the result expressed by equation (3.15) does not apply only
to the case of a cone placed in a thin jet, but also to the case when the
fluid within the cavity extends to infinity (d - o).

To evaluate the integral in formula (3.15) we assume, as an approxima-
tion, that the additional velocity u varies linearly from the value of v, at

the inner boundary to zero at the outer boundary. Thus v, = v, (1 —g—),

where { is the distance along axis R from the inner boundary to some
point inside the jet. Substitution of this velocity distribution into the
continuity equation yields

]
ﬂ%=§m+w%m+0%
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whence
< zR&(l + a).

The integral in (3.15) can be expressed approximately as

{ o dF=QTOE§2n(R+C)(1'—%)zd?;zﬁ-"—d-'~9:-.
Fu ’

The drag is

The drag can also be estimated approximately by drawing the rear part
of control surface I — IV in the immediate vicinity of the cone base. Carrying
out elementary calculations and retaining terms which are a function of ¢
only to the first power, we derive the approximate expression

l—cos(%— ) R R2
5k 0 (3.16)

e — —

(+o % FF
The drag of the cone is expressed approximately in the form

X =" Qﬁ’2[ 1—cos (5 —B)] + <R3 (o, — o~ nRiAp,

where 5 —B=p 0.
Figure 27 shows the flow of a jet of weightless fluid past a circular
cone for the case (—n,l— —p) = 0.4, cavitation number ¢ =0.01, and d = 2R, =

=1 cm. The cavity outline was calculated from (3.12), while the
reentrant jet is expressed by (3.14). From the preceding expression for
X the drag coefficient referred to the cone base area aR? will be, for the
problem at hand,

¢, = ?dR‘g[ 1 —cos(—;——ﬁ)] +0=0.03.

The boundary segments calculated from the above expressions are shown
by solid curves in Figure 27,

8. General treatment of the energy
and momentum equations

We consider the case —Z— - 0 and 6—- 0. However, the flow still remains
as shown in Figure 27, i.e., the presence of a reentrant jet. Then the
equation R+ R 0 of the radial motion of the annulus becomes asymptoti-

cally exact. Mu1t1p1y1ng both terms of this equation by 21ReS and making
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use of the fact that 2nS = 2n1R§, we have
2nQROR S5 + 2mR 2R pp — 0.

The first term represents the time derivative of the kinetic energy T of the
fluid per unit length of cavity generatrix, while the secondterm, correspond-

ing to the express1on = (nR"’A ) = can be regarded as the derivative of

au’
ar
the potential energy U’, also referred to unit length of the cavity generatrix.

Hence the equation of expansion of the annulus is equivalent to the energy

equation in the form d— (T +U) =0, or T" + U’ = const for any annulur ele-

ment of cavity length. When the cone moves in its absolute motion through
distance dx, provided that the fluid column can be treated as stationary, the
force overcoming the drag performs work Xdr and an element of annular
cavity with length dx, containing energy (T +U’)dx, moves away from the
base plane. Consequently, 7" + U’ = X. The instant when the annular ele-
ment reaches its maximum expansion and R =0 corresponds to the first
term of (3.15) for the frontal cross section. Upon subsequent compression
the energy contained within the fluid annulus also remains unchanged and is
transferred to the reentrant jet in the rear part of the cavity.

Denoting the kinetic energy of absolute motion of the fluid for time ¢, by
T,, and the momentum in the direction of absolute cone motion by B,, we have
for any subsequent time ¢

4 t
T=r0+5xvodt; B=B,,+5th. (3.17)
13

It was pointed out above that when the cone moves relative to the stationary
fluid column in the crosshatched part of the volume (see Figure 27), the
energy and momentum do not change, and the increments in T and B occur
due to the reentrant jet moving into the cavity. If the absolute velocity of
the cone is x = V, = const and during time t — ¢, it travels through distance x,
then we have an added mass ¢F,x of the fluid in the jet, whose absolute
velocity is 2x. Thus

T =T, +¢F, x(gx) To + oFx (29 x;
B =B, + of .x (2x).

These equations yield the identical result, valid for any uniform motion
of a body relative to a stationary fluid:

T—Ty=(B—By)x, (3.18)

where the momentum vector B is directed as velocity x; here, from the
condition of axial symmetry, B8 is the principal vector of the absolute
momentum of the fluid.
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PLANING OF A PLATE
9. Steady free boundaries

Steady planing and developed cavitation can serve as examples of flows
with steady free boundaries. The formation of a cavity behind a body is
equivalent to the formation of a free boundary behind a planing surface in

the sense that new fluid particles move
from the body edge to the free surface.

y First we consider in detail the proper-

ties of free boundaries consisting of the
[dxp same particles, which arise ahead of
planing bodies (Figure 28).
x Retaining the notation of Section 4,
Chapter One, we restrict ourselves to
] Y’ the case when the transport velocity V,
Trajectories has the same direction as the undis-
xe 7 // >’ turbed boundary. The absolute velocities
0 y@;{_/j X of particle & along the normal and
/ ¢ oy tangent to the free boundary will then
A7 x¢,.0)=¢ 2 be u, =V,sina and u, =V, (cosa — 1), where
x,,t) « is the angle between s and the x axis,
if it is assumed that V, is in the positive
FIGURE 28. x direction, which is also the positive
direction of s, According to Theorem VIII
for a steady free boundary the distances
between particles at the boundary remain constant; consequently
5, (&) — 5, &) = E —§&, where £ is the abscissa of particles at the undisturbed
free surface.
The potential difference between particles § and § is defined as

2 2 2
q’(ﬁtv ‘)'—(P(Ept) = Susds= V,S(COS&— l)ds=V,(x—s)l .
1 1 1

If it is assumed that ¢, ) > 0 as § —» oo (consequently, r and s separately
tend to infinity), and also that s,—x, -~ 0, the preceding expression yields

9E H=V,(x—8), (3.19)

where x is the abscissa of particle § at time ¢, while § is the abscissa of
the same particle at time ¢t =0, i.e., at the time when the particle was
still at infinite distance from the planing surface. Consequently, x — §is
simply the absolute travel of particle § along the r axis.

It is known that normal velocities at a free boundary at large distances
ahead of a planing plate (in the two-dimensional case) are approximately
the same as those ahead of a corresponding lifting vortex. Consequently,
if at the time under study the vortex coincides with the origin of the
stationary coordinate system x, y, then as x »~ x

const
u=u,=V, .
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However, dt = — “’,—"; hence formula (2,7) yields*

e
oo

t
v
9E. = % Su’dt z-;—constV, S % z—;-const =

"] xw
1
Under these conditions the rise inthe level of the free surfaceis y, = Sudt,

0
and consequently it is logarithmically infinite. For a plate with finite
span formula (2.7) is applicable directly in the vertical plane of symmetry.
But for any three-dimensional flow the reduction in velocity u with increasing

distance from a planing plate occurs more rapidly than z.lr., and therefore

everywhere at a free surface from the point where it starts curving the
potential of any particle is positive and finite, while the level rise y, can
be as large as desired.

10. Kinetic energy

In the two-dimensional case the kinetic energy of the fluid in any region
is obtained from the expression T = —%Sq; g;:ds (see Section 7, Chapter Two).

If Tis referred to a layer of unit thickness (along the z axis), in our case

% _ _4, and, in addition, sinads= —dy; hence, substituting the above values
of u, and ¢ into the expression for T, we obtain %ds = —V,sinads =V dy.

Integration from sto s - oo yields

¥s
T=%VfS(x-—-§)dy. (3.20)

0

In keeping with the meaning of integration in (3.20) one should, at some
instant of time, integrate the particle travel (x—§£) = f(y.} along the free
surface. However, the steady state of the free surface means that the
trajectories of all the particles are identical, hence geometrically the

Us
integral j(x—-g) dy is the area bounded by the trajectory of particle g,

0
segment of the y axis drawn from the start of the trajectory, and segment
x—t connecting point y,, {, which is the instantaneous location of particle §,
with the y axis. The geometric construction is shown in Figure 29, in
which this region is shaded.
To calculate the energy T, expression q)%:; should be integrated over

a closed contour, since we restricted ourselves in deriving (3.20) to
integration only along the free boundary from particle § to =5+ co.

The interpretation is that (3.20) expresses the kinetic energy of the fluid
within a region bounded by surface ¢ =0, free surface s extending from
particle § to infinity, and a streamline (in absolute motion), which arrives
at particle § and intersects the plane ¢ =0. In Figure 29 this area is
shaded by continuous and dashed lines.

* In general the moving and stationary coordinates are related by the expression x mx—V.f; since here
x=x’, we have dropped the prime of x in the integrand.
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The particle travel x(§) —& decreases with increasing x not slower than

—xl,—,; the surface rise y, is proportional to Inx. Hence the integral in (3.20)

decreases as -xl—, with increasing x. Consequently, the kinetic energy of

fluid particles in the surface region is always finite.

11. Stagnation point

2
The excess pressure at the stagnation point is Ap, = QTVE; the velocity of a

fluid particle situated at the stagnation point relative to the planing surface
is zero. Consequently, the same particle §, is always located at the stag-
nation point. Here the absolute velocity v (8, # of this particle has the

same direction and magnitude as the transport velocity V.. All the particles
at the planing surface which do not coincide with the stagnation point move
away from it. The normal velocities of particles close to the stagnation
point are identical. Hence those particles E., which are located in the
region of the spray sheet, have absolute velocity v (&, O > v (,, 8, while

for particle &n, located in the main flow, v(E.,0) < v (. O (Figure 30).

The pressure at the stagnation point is maximum and %’- =0. Hence

according to (2.5) the rate of growth of the potential of particles infinitely
close to the stagnation point is

0 do, #EH _ vy 69
ﬁ¢(§yt)=—T+ 7 T ——

Consequently potential ¢, f) for particles §, increases, and for particles
§m of the main flow the potential ¢(, ¢ decreases. For particle &, located
at the stagnation point —37 ¢{S.. H=0. For a particle at infinity (£ - o), at
the free surface Ap=0, while u is a quantity of the same order of magnitude
as -&; hence as tE > co we also have %q?(@-*oo. H=0. It follows that the

3
rate of increase in the potential difference between the stagnation point
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and a point at infinity is zero. Hence ¢, ) —9¢, = const and, with the same
justification as ¢_— 0, it can be assumed that ¢, H=0.*
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FIGURE 30.

Therefore surface ¢=0, ahead of a planing plate bisecting at infinity
the distance between the instantaneous position of the free surface and the
undisturbed level, is always located above the undisturbed level and
approaches the planing plate at the stagnation point, where the excess
pressure has a maximum.

12, Lift and drag

We assume that the plate is planing at velocity V,, directed along the x
axis which coincides with the undisturbed level of the fluid. The angle of
attack of the plate is denoted by a. The normal force P, on the plate can be
determined from various points of view. It follows from the energy
equation that the increment in the kinetic energy of the entire fluid is
equal to the work of internal forces. In steady motion of a plate the kine-
tic energy of fluid particles changes only due to the sliding off of a spray
sheet with thickness 6 from the leading edge of the plate. Neglecting the
pressure gradient within the spray sheet and making use of the fact that
the relative velocity at the free surface is V,=V, (Theorem V1), we find

that the mass of fluid leaving (per unit time) a unit plate span at the
2

forward edge is bV, and that it carries away energy obV, ';—‘ Velocity

v, is the absolute velocity of particles at the forward edge of the spray

" This assertion is quite rigorous if we treat steady planing as the limiting case of self-similar entry of a plate
into the fluid, when the velocity is directed at angle 6 to the undisturbed level. Then, as 8 — 0, there
will exist (according to the cogdition of self-similarity) a single particle Ek for which ¢, = 0 at time

e
t= 0, and condition Ap— ——2—'- = 0 is always satisfied. Hence for all #>> 0 we have (p(E.. f) == 0.
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sheet; consequently v, = 2V,cos 5

(Figures 30 and 31). From the
energy equation ‘—idTl— = P, sinaV, = o8V %
we derive the expression for the

normal force

P, =qdVictg 5. (3.21)

e

FIGURE 31.

Formula (3.21) can be regarded
as the generalization of Zhukovskii's formula (for a plate placed perpen-
dicularly to the flow), that the pressure force on the surface is eQV,,
where Q is the fluid volume carried away by the spray sheet per second.

If a= % and Q = §V,, then (3.21) expresses Zhukovskii's result. The

analogy established by Wagner between a planing surface and an airfoil
yields the expression for the lift

eV:

2
Y=nsina 2’ L= P,cosa,

where L is the wetted length (see Figure 31). Comparison of this expres-

sion with expression (3.21) shows that Li= i;—a’ if @a— 0.

Formula (3.21) can also be obtained from a Lagrangian equation of the
second kind. Suppose initially the kinetic energy of the fluid in the entire
region is T,. The plate will move during time ¢through a distance x= V¢ and
3
7
V.= x, the energy at time ¢ will be T = T, + obxx®2cos? % The generalized force

UZ
energy T, will be increased by the amount g&xT‘. Since v, = 2V, cos while

referred to the x coordinate is X = P sina. Substitution of the above expres-

sions into the Lagrangian equation ;—f%’f-—%- = X again yields (3.21). We
x .
note that the above applies only to steady motion, when x=0 and « = const.

If the plate moved before time t at constant velocity x = x, and the
corresponding force was P,,, and then during time interval t,—¢ the plate
acquired the velocity x=x,, then with time, as t,<t-oco, if % = const, the
force will acquire a new steady value P, -~ P, which is also obtainable from
(3.21). The transition from one steady motion to another involves a change
in the kinetic energy of the entire fluid, and not only of the energy in the
spray sheet. Hence, during such a transition force P, will no longer be
obtainable from (3.21) and cannot be calculated from the Lagrangian equa-
tion, since the constraints for the particles will no longer be holonomic.

The ideal fluid flows examined in this chapter can be calculated exactly.
Steady planing of a flat plate was already studied in great detail by confor-
mal mappings. An analogy between planing and the motion of an airfoil
was established by Wagner; the problem was developed further by Sedov.
However, the equations used here are more general and can be used in
many different cases, in particular those for which an exact solution
cannot be obtained. Comparison of general relationships for a flow which
can be calculated exactly in a particular case allows one to obtain a
general idea of the flow pattern and to construct an approximate computa-
tional scheme for another flow which cannot be calculated exactly.
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Chapter Four

SYMMETRIC IMMERSION OF A BODY INTO A FLUID

In studies of high-velocity entry of bodies into water it is often possible
to treat water as an ideal and incompressible fluid. However, in all cases,
even on the assumptions which are made, exact calculation of the forces and
configuration of free boundaries are found to be virtually impossible. It is
hence very important to use relatively simple examples to examine the
details of these kinds of flows, clarify the principal governing relationships,
and work out effective methods for theoretical estimates which would agree
with experimental results.

The entire immersion process can be subdivided into three stages: from
initial contact to separation of the spray roof region from the body surface;
from spray-root separation to cavity formation; and steady cavitating flow.
In the present chapter we consider the first and second stages of immersion
of symmetric bodies anc profiles, which possess the property that initial
contact with the free surface occurs at a single central point.

1. Impact of buoyant bodies

Problems involving impact of buoyant bodies are stated as follows. It is
assumed that the fluid is ideal, incompressible and fills some part of the
space bounded by the specified free surface s. A body (or contour in the
two-dimensional problem) whose surface s, is also specified floats at the
fluid surface. Before impact the body and the fluid are at rest. Impact
means imparting to the body a velocity V over an infinitesimal time interval
At -0 by applying to the body an infinite force P -~ co. Since the fluid is set
in motion from rest by normal pressures, the motion is potential. As is
known, if the Cauchy-Lagrange integral

) ot
wtztE+U=Fy

is integrated over this infinitesimal time interval A¢, it is found that the
integrals of terms which retain finite values within the integration interval
drop out as At -0, and as a result one derives the expression
at
Qq)-_-_—gpdt= — Py

[

where p is the impulsive pressure.
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At the free surface s we have p, = 0; consequently, following the impact
the velocity potential gatitis equal to zero {(or to a nonzero additive constant).
The fluid velocity normal to surface s, at the body surface after the impact
should equal the normal component of the body velocity, and therefore the

boundary condition at surface s, is -g%-_— e,V. At infinite distance from the

body the fluid motion vanishes; hence grad ¢ -- 0, and velocity potential
¢ tends to zero or some constant value.

The problem of impact on a buoyant body thus reduces to a boundary-
value problem of a mixed type, when the value of potential ¢ is given over

a part of boundaries s, while the value of ‘;—?: is given at a part of boundary s,;

boundaries s and s, are known, and we require the potential function
satisfying the Laplace equation Ag = 0 within the fluid-occupied region, and
boundary conditions at surfaces s and s,. Methods for solving problems of
this type are known and have been incorporated in all courses on hydro-
mechanics; at present a large number of particular results were obtained
for two- as well as three-dimensional flows. Hence, without dwelling in
detail on the theory of impact of buoyant bodies, we shall note only the
principal results.

In all these cases the ensemble of impulsive pressures applied to the
fluid by the surface of the body, reduces to the principal momentum vector
B and the principal vector of the impulsive momentum, i.e., the vector of
the moment of momentum [angular momentum | M of the fluid, expressed in
terms of induced inertias, the components of which can have different values
along different axes. It is known that reduced masses and moments of
inertia depend on the shape and dimensions of the body, and on the form of
the free surface (if the body floats), and are proportional to the density ¢ of
the fluid and are independent of the velocity following the impact. In
particular, for vertical symmetric impact (along the y axis) of a buoyant
body B, =0, M =0, while B,=m}V and the kinetic energy of the fluid is

T=m-—* = —;-B,V,,. For a plate of width 2¢, aligned along the x axis, the

induced mass per unit length z on impact in the y direction is m} = %gcﬁ;
for a disk with radius c in the x, z plane on a like impact we have
m, = -g—gc”; the values of induced inertias for other cases can be found

in the literature and will be subsequently utilized without proof as known
results.

In 1952 Gurevich /5/, as well as Berman, Parkhomovskii and others,
solved a number of problems involving impact of profiles in developed
cavitated flow. Solutions for two-dimensional flows are found by means of
conformal mappings.

From the standpoint of mechanics these problems are equivalent to
problems of impact of a body on an infinite fluid, or of a body floating at
the free surface, the only difference being that even before the impact the
free surface assumed a shape produced by cavitated flow. In these cases
the induced mass found from solving the impact problem cannot be treated
as a universal constant. The continuous motion of a profile or of a body
with developed cavitation behind it cannot be constructed by superposition
of infinitesimal, but infinitely frequent, impacts.
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It is easy to show that for arbitrary motion within an unbounded region of
a closed surface, it is always possible to draw on such a surface a closed
curve on which the velocity potential would be equal to its value at infinity
(for example, zero). An equipotential surface extending to infinity can be
drawn from this curve at the body surface and this equipotential surface can
always be treated as the free surface in the problem of impact by one-half
of the body. In this sense problems with impact of a buoyant body are
equivalent to problems of the motion of a body within an infinite fluid; when
the buoyant body is impacted tangentially to the free surface, this is
equivalent to the shifting of one-half of a symmetric body relative to its
other half within an infinite fluid.

2. Immersion and impact

Comparison between the theory of continuous immersion and impact entry
of buoyant bodies shows that these two phenomena are entirely different.
This assertion is supported by the following considerations.

1. The theory of impact of buoyant bodies ignores the migration of the
free boundaries during impact, and hence the potential at the free boundaries
during this time remains unchanged (in particular, ¢ = 0). This motion of
free boundaries cannot be neglected in continuous immersion; the velocity
potentials at the boundaries differ substantially from zero and may markedly
exceed the potential at the body surface.

2. The fact that potentials at the free boundaries are not zero means
that the fluid flow arising on continuous immersion cannot be obtained
instantaneously only by the body impact, even if the boundaries in both these
cases are the same. This flow forms with immersion of the body and
contains within it implicitly the immersion history.

3. The relationship between the momentum and energy for symmetric
impact and for immersion are different. In the case of impact of a buoyant

body T = .;V,By, and consequently Wagner's integral is /, = 2T —VB, = 0.

On uniform immersion this integral is equal to the kinetic energy of the
entire fluid and determines the drag. The concept of the induced mass on
immersion of a body also has a different meaning than on impact. In the
presence of free boundaries it is impossible to formally construct the
equation of motion of the body on the assumption of steadiness in the

frequently used form 7‘1— [(m 4~ m*)V]+ g3 = 0. The induced mass m* and the

drag coefficient kare found to be related and depend not only on the
instantaneous state of motion of a body with mass m, but also on the
history of this motion.

Even in the simplest case of uniform immersion of a rectilinear wedge
the rigorous mathematical solution of the problem cannot be fully completed.
The equation of the free boundaries remains indeterminate, and this in turn
makes it impossible to formulate the corresponding boundary-value problem.
But even if the equation of the free surface could be found, difficulties would
arise in solving the Laplace equation when a part of the boundaries has a
complex curved shape. The problem in more complicated cases is even
more difficult. Hence, subsequently, we shall attempt to circumvent these
difficulties by seeking suitable approximate solutions to problems of this type.
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CONTINUOUS IMMERSION OF A PROFILE
3. Uniform immersion of a wedge (Wagner's problem)

We assume that an infinite wedge is immersed symmetrically into a fluid
(Figure 32). The general conditions are as follows: the fluid is ideal,
weightless and incompressible, with density ¢. The initially quiescent fluid
fills the lower half-space x, y, z at y < 0. The coordinate origin is placed at
the point where the wedge vertex first comes into contact with the free
surface; the depth of immersion is 4, and the rate of immersion is
h = V = const. Since the fluid motion starts from rest due to normal forces,
it has a velocity potential ¢ at each instant of time and at each point in the

fluid-filled space. All the results pertain to unit wedge length along the
z axis.

FIGURE 32.

At infinity grad ¢ —» 0, and it can be shown that the effect of the flow at

= x4 1 >oo is equivalent to a doublet of the form ¢= _m +C, where

M is a constant. We hence set the additive constant C equal to zero and
assume that ¢ >0 as r > cc. At the wedge's solid surfaces the boundary

condition is %. = Vcosp, where g is the deadrise angle.

The pressure p at each point of the free surface is constant and equal to
p,» the pressure at infinity. The free surface proper is in motion and always
consists of the same fluid particles. The free-surface arc, measured from
the tip O of the spray sheet, is denoted by s. Then the dynamic boundary
condition, which follows from constancy of pressure at the free boundary,
is g—f =0 or e}% = 0, where « is the absolute velocity vector at the boundary
(e and e, are unit tangential and normal vectors). Since u = eu, + ¢u, the

Du

dynamic condition is reduced to the form D—" =y, D—[;—, where a is the angle of
rotation of the free surface. The kinematic conditions at the free boundary -

reduce to two equations (for the relative elongation % =8, % and for the
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rates of rotation %_‘:‘ = en%';) of a boundary segment, consisting of the same

particles. These conditions are general and valid for any free boundaries;
they will subsequently be used.

The self-similarity of the flow is obvious, since the linear dimension
(for example h) is determined only by the scale. Consequently, the free
boundary translates while remaining similar to itself. Hence in polar
coordinates r, 8, for each 8 = const a point on the boundary is transported

along radius s at constant velocity V, == 4V, while the arc length of the

free surface up to this point increases at the rate —:, which is also constant.
Obviously, the velocity u of different fluid particles which arrive at different
times at point —'t- = const and 8 = const is the same. Hence, if 4,= 4 (s, f), the

dynamic boundary condition for a point at the free surface propagating along
. . . .0

r in a given direction is 7‘}=%‘, which is the first kinematic boundary
condition (see (1.68)). Consequently, the distance along the free surface
between individual particles remains unchanged throughout the motion
(Theorem XI).

Denoting the individual particles of the free surface by their initial
abscissas t at the undisturbed surface, we have §=s. The absolute velocity

of a particle at a self-similar point A is u=V, +V_; the absolute magnitude

of the velocity isV, = T‘, and this velocity is directed toward the spray-sheet

tip (Figure 33).

v
FIGURE 33.

The potential and stream functions at the free surface are given by

o9 - r or s
Fs == V,ecos(r,s) — V, = T

e

Poo — Pysy = 5 uyds = o
H
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Integration is carried out for a fixed time ¢t. At infinity, where
r=s-»coas u,~ 0, it is assumed that ¢_, = 0, which yields

L J—_
(p(s‘t)= o - (4.1)

The stream function at the boundaries will be treated as positive if
velocity %i'; is directed along the inward normal; the stream function at the

free boundaries is negative. At the free boundary
dp = —u,ds = —% sin (r/,\s) ds,

. LS L) .
since sin (r,s) = %, we have ¥ (s, f) = —21—F, where Fis the area of a curved

sector, bounded by free-surface arc s and radii connecting the ends of this
arc to the similarity [homothetic] center. The same expression for the
stream function is valid also for the wedge generatrix s,; hence the
condition (s, f) + (s, t) = 0 defines the ends of the same streamline.

The pressure at each homothetic point is

P—p, op dr 1

a9 1
=—-5;-+7-—dt—--§u. (4.2)

If % = const and 0 = const, then ?T(zp=%’ and so Ap=p—p = const at each
point. It is of importance that the boundary condition at the free surface
(Ap = 0) coincides with the kinematic condition 4 =V, +V,. If the pressure
force of the wedge on the fluid is P, (f), by virtue of the fact that the pressure *
at homothetic points is invariable while the distances between them increase

p
in proportion to time ¢, we have 7"= const.

The energy and momentum of the fluid are determined from the preceding
condition for the force:

t
P PVt P Pt
T— §(+)tth -2 B= S<t—"\)tdt=L. (4.3)

It is noteworthy that this yields the condition T = VB, relating the energy and
momentum, which is in general characteristic for any symmetric uniform
immersion. If we would stop the motion at some instant, while retaining the
same boundaries as for uniform immersion with a homothetic center, and
by impacting on the wedge we would impart to it momentum B, and velocity

V., then the kinetic energy would be T’=%VB,'.. At all the free boundaries
immediately following the impact ¢ and # would then be zero.
The energy and momentum can also be calculated in terms of ¢ and 2 at

on
the boundaries:
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O d
T=—-g— 5(’)%(13; ons, %:Vcogﬁ;
sp+s (4.4)

B,=—0¢ S (pcos(n’,\h) ds, on's, cos (nj\h) = cosf.
spts

Multiplying the second integral of (4.4) by V and subtracting from it twice
the kinetic energy 7, we derive Wagner's integral, thus eliminating integra-
tion over the solid boundaries:

T=v3h=gsm(wx—"“’ ds). (4.5)

on

DB .
Since P, = -#, while B, is proportional to ¢!, the derivative has associated

with it the factor tzz
=2 4y
P;.—-T'jq)(dx-i-v). (4.8)
5

Wagner, in determining the position of the free boundary by successive

approximations, used this formula to calculate the drag of a wedge with

deadrise angle 18° and found it to be approximately Px = 16 noV%.
Dimensional analysis formally yields for the drag the expression

P, = oV*j (B), however, this theory does not aid in calculating function f (§).

4. Small deadrise angles

It is clear that 8 < B for any point on free boundary s, and soforf -0,
r - §=35. We denote by ¢ the distance along the x axis from the homothetic
center to the spray-root point (Figure 34). Obviously, the rise of the
spray-root point (at which the tangent to s is parallel to the y axis) will be
equal to ¢ (tgh) —h — 8, and for all x > ¢ the rigse of the free-surface level is
g, < c(tgp) —r — 8.

FIGURE 34.

If we retain ¢ constant and decrease f until it vanishes, then c (tgf) - 0
and y, » 0 for all x > ¢, since h < c(tgh). Hence as p -~ 0 the free surface




outside the spray sheet is infinitely close to plane y =0; the boundary
conditions at the wedge surface within width +c and at the free surface for
x > ¢ are equivalent to boundary conditions at a plate floating on the free
surface and impacted vertically. The difference between these flows
consists in the fact that in the case of a wedge the equivalence to the plate
does not hold at the spray-sheet root and a fluid stream, carrying kinetic
energy and momentum fluxes from the principal region into the spray sheet.
In order to determine the energy and momentum, the entire region
containing the fluid can be divided into two parts: the bulk of the fluid and
the region of the spray sheet. In the bulk of the fluid, from equivalence
with impacting on a floating plate at p — 0, the kinetic energy of the fluid is

%]
T1=%QC’? ’

and the vertical component of the fluid momentum is

n

Bh =7 chv

When B - 0 the length of the spray sheet is s. - ¢, while the absolute

velocity of every fluid particle in it equals 27" It is possible to replace the

entire region of the spray sheet by an equivalent triangular spray sheet with
base thickness 6. The mass of the fluid in two spray sheets is then ¢bc, the
kinetic energy carried by them being

21

2
T,= gac(T) 5
and the vertical component of momentum is
2
Bi=~— ofe (8.

Since B, = B,, + B,,, for §-0, we have B, - By, and P, > nV CT'
As a result of the fact that T = V8,, for p -0, we have T, T7,. Consequently
§ no(h\
TTTF ('c‘) :
The determination of width ¢ is based on the previously mentioned analogy
with impacting a plate floating on the free surface. Since the boundary
conditions for both cases are identical, due to the uniqueness of the solution

of the Laplace equation the velocity potentials at the boundaries will also be
identical. The potential for a plate of width +c is

o= —VVE—R

and the normal velocities at the free boundaries are

u,=v(—l_—'(%7———l).
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Particle & rises above the initial level until, at time ¢, it reaches the
side wall of the wedge or, more precisely, passes onto the surface of the
spray sheet, in which case ¢ = x. Hence

!

Su,,dt+h=c(tgﬁ). (4.7)

0

Setting t = t(c), we have df = %dc. Substitution of the expression for df into

(4.7) yields the integral equation

dh d(%) (4.8)
x T T = (eh),.
= (5)
1 1
F U ah . dg . n
or a rectilinear wedge = const while § = =arcsinl| = &
Therefore ’
I S (4.9)
dh 2 igh -

Wagner /31/ regards function % as purely geometrical for both rectilinear

and curvilinear wedges.
It can be shown by a direct check that if the profile relative to the vertical
centerline of the wedge is

nmax +ax* +a,° +ayt + ...,

then integral equations (4.7) and (4.8) are satisfied provided
dhn 2 4 3 16
Zz =Tatac +a,;-c’+?agl—"+ﬁa.c‘+...

These two expressions can be used to find ¢ = f (1) for curvilinear profiles.
An example is a wedge with straight sidesa =tgp anda, a,, . . ., = 0; this
proves the validity of (4.9).

For a profile outlined by a quadratic parabola we have n=g,x* and

%'-=a,c, from which A —a‘.‘;, since at the point of initial contact 4 = 0 and
¢ = 0. If a circular cylinder with radius R is immersed into the fluid, then,

as long as ratio %is very small, the arc of its circumference can be treated

i
75+ Hence & =4Rh
and, since we are using the expanding-plate analogy, the vertical momentum
component is

approximately as a segment of a parabola provided g, =

n

B, == 3 oc*h = 2nohhR,
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and the drag at V = h = const is

dB .
Py = —t = 2ngRi%. (4.10)

Using formula (4.9) and proceeding as before, the drag of a rectilinear
wedge is found to be

P, = nohh? (m_;‘v)!. (4.10a)

We note that (4.10) and (4.10a) express the limiting result, which is closer
to reality, the smaller the values of ‘% for a cylinder and of B for a wedge.
Attempts to obtain a satisfactory approximation for force P, at nonzero
p from the expanding-plate analogy were made by a number of investigators.
However, published results are not free of certain contradictions in
applying the Cauchy — Lagrange integral. Hence, a detailed study will be
made in subsequent sections of the method of the pressure integral and it
will be correlated with the theory of self-similar immersion of a wedge.
It will be shown by a number of examples that the use of this method makes
it possible to obtain approximate, but sufficiently accurate, formulas for
calculating the flow corresponding to immersion of bodies.

HE 1 ] ¢
\ e — integration of equa= T \ee— -
20 1 tion (4.6) =20°
\ A - from the integral [por 7
\ o — Wagner'scalculation for
\ p=18° FIGURE 36.
15 4
\
10
5 (A
I . = Ny
0 \ &
20 40 60  80p deg &
FIGURE 35. FIGURE 37.

Wagner /31/, in his classic work, calculated (by the method of
successive approximations) the drag P, for B = 18°, using (4.6). Then,
using the results of (4.10a) [so-called expanding-plate analogy] and the
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case p » 3, obtained by solving the problem for impact on a floating wedge,

he suggested the approximating expression
P”=nQV'h('2‘3—1)'. (4.11)

Pierson's calculations /28/ generally confirmed Wagner's results.
Figure 35 shows the results of these calculations. Curve 1 is calculated

P
from Wagner's formula;{-,, = 2th(%—° - 1); curve 2 was obtained from

. P 57.3 \3.78 .
t y
Pierson's formula covr='5'9 (rao) , while curve 3 was constructed from

(4.10a) with & replaced by ’%ftgﬂ. Figures 36 through 39 depict free-surface

profiles calculated by Pierson.

It was shown by experiments carried out by Zhuravlev and Golovin /14/,
in which the instantaneous resistance to energy of metal wedges into water
was measured by piezoelectric transducers, that under conditions when the
aspect ratio can be assumed to be large, the results calculated from (4.11)
are in satisfactory agreement with experimental data. It is interesting to
note that (as these experiments also showed) the force attains its maximum

when a wedge of width 2ais submerged to a depth & = -;f:atg B. This is an

indirect proof of the main postulate of Wagner's theory. In general,
comparison of results obtained from Wagner's approximate immersion
theory with experimental data shows that these are in satisfactory agree-
ment, allowing one to apply these methods to the solution of new problems.
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FIGURE 39.

5. Kinematic elements of the free surface

To construct an approximate theory of immersion of various bodies it is
very important to estimate the kinematic parameters of the spray-root area
and of the spray sheet at the free surface.

The velocity distribution at salient points of the flow can be determined by
simple measurement of the segment lengths, using the results of free-
surface calculations from /28/, displayed in Figures 36 —39. We assume

that h = 1, A= 1, t=1 and also ¢ = 21‘?' The asymptotic solution as 8-+ 0

yields the following limiting relationships (see the notation of Figure 38):

1,y 2\g_ B % _ .
e A U LB S R

Table 1 lists quantities measured from Figures 36 —39 and calculated from
formulas giving the limiting relationships.

TABLE 1
Y Yge
G T
s | e 0 Lo | Se d S
B 3 3 B e B
meas- | calcu~ meas~- | calcu=
ured lated ured lated
0 0.318 1.000 - 0 1.000 | 2.00 1.00 - 2.00 0.362
20 0.32 1.015 0.093 0,110 1.01 1.95 0.98 1.94 1.94 0.312
30 0.31 1,030 0.146 0.145 1.05 1,97 1.00 1.88 1.86 0.267
40 0.29 1.035 0.181 0.173 1.05 1.87 0.97 1,78 1.7 0.260
50 0.30 1.065 0.242 | 0.230 1.077 1.83 1,02 1.74 1.64 0.250
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The following should be noted. The tangential velocity within the
spray sheet is defined as the projection of the transport velocity of the

spray-sheet tip onto the edge of the wedge, i.e., u, = fl—‘cos(OACA). Had the

free surface been stationary [relative to the wedge] and moved along the

x axis with velocity g, the principal boundary condition (see Sections 4

and 6 of Chapter One) would have yielded u, = d (1 4+ cosB). It is seen from

c
dar
the data listed in Table 1 that, at least up to B = 40°, the results of the
asymptotic theory (B — 0) and of more exact calculations are in very close
agreement,
Let us now clarify the location on the lateral surface of the wedge of
I :
point K, at which ¢ = 0. The potential at point C is ¢.= 2‘-5.; moving along
¢
the lateral surface of the wedge to point K we obtain ¢, =¢.— Su;ds = 0.
K

Within the integration interval u, <u,, and consequently K'C < KC; here
segment K'C is derived from the expression '

=K'C -'fcos (0CA).

25,

Thus, point K with ¢ = 0 is situated close to point K’, but within segment
K'A ; projection of point K’ onto r, (point D) bisects this segment.

6. Graphical representation of the momentum and energy

Once the free-surface shape is known, it is possible to construct a
diagram which graphically explains the application of Wagner's formula
{(4.6) and makes it possible to approximate the as yet unknown potential

distribution. If the instantaneous values of potentials % at boundaries are

constructed as a function of f, then we obtain the scheme shown in

Figure 40a. The potential for the free boundaries is calculated from the
formulas of Section 3 of the present chapter. At the lateral side of the
wedge, in the spray-sheet region where Ap = 0, the potential is easily
calculated from the known velocities and configuration of the spray.

The potential at segment 0K is unknown and should be selected to satisfy
the conditions of the problem. The vertical component of the momentum is

p=—0 [ odr=2cV(S,—AS),
Spt+S

where S, and AS are surfaces bound by the curve %=f(%).
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Figure 40b is a plot of velocity potential 7; as a function of 7. When

calculating the kinetic energy along flow tubes,

T=—% | edo=—% (@—oav
Y-+ Vi

the free-surface velocity potentials @5 in Figure 40b are referred to the
starting points of the streamlines at the wedge surface; obviously, the
difference in ordinates of the crosshatched regions S, and S, is equal to
the differences in the relative potentials at the ends of the streamline, for
whichf = % It is clear that the entire crosshatched area is proportional

to the kinetic energy and that the equality
T = V3 (S, + Sy)

is here valid.

r I 1 I
ve /
3 Surface of wedge 7
s . \ /]
P /
! Xy Free surface
-— 1+ —t—— =45
0 K
, Ellipse
s N
-2 {

o 025 050 075 100 125 150 A
1 a c
7

% Spray-sheet tip
3 |
Free surface
2 x=c
g 'SL
‘ X Surface of
wedge
0 |
. S, | 80max A;I:-ﬂ atlx-x,,
o 025 030 075 100 125 150 L
b ve
FIGURE 40,

Wagner's integral (4.5) is /,, = 2T — B,V =T. Substitution of values of T and
B, into this expression shows that area S, disappears from the Wagner
integral and [y = 2¢c*(S, + AS). However, to calculate the pressure distribution
at the wedge surface it is necessary to know the potential distribution at
segment x,, which cannot be calculated by ordinary methods.

Using the expanding-plate analogy, it can be approximately assumed
that the curve bounding area S, is an arc of an ellipse, selected to satisfy
the following conditions:
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a) at point K, ¢ =0,

9 _ % de
ox ¢ df’
R X,
b) at point =-, >0,
0 _ oo de
ox T dr *

the excess pressure Ap = 0;

¢) from point ¢, to the spray-sheet tip the potential varies linearly along
a straight line tangent to the ellipse at point .

It is evident that all these conditions can be satisfied by expressing the
potential along segment + §, in the form

p=—cVIVT—0—VI—1l (4.12)

The area can be determined from

e
5= S WVT—0—VT=Cdt = 5 {arcsing, — ¢, VI L) = X— VT3,

1]

In general area AS is unknown, but some basis exists for the assumption that
AS=0 for small 8.
From the theory of self-similar immersion

DB, 28 )

t

Substitution of the expression for ¢ yields
2 4 +
Py = mhV* (gz5) (1 — 2 VT=T). (4.13)

Quantity ¢, for a wedge when V = const can be determined from the
velocity condition at stagnation point K, at which the fluid velocity is identical
with the transport velocity at point K proper (see Theorem XVII). The
potential distribution for curved surfaces (a cylinder, say) can be assumed
to be the same as for a wedge, but determination of ;. is a more complex
de
dn
to point K. However, for slightly-curved profiles {, is determined in the
same manner as for a wedge.

problem, since Z is variable and Theorem XVII is not directly applicable

7. Velocity and pressure distributions

Formula (4.12) defines the velocity potential only at the wedge surface; hence
whendifferentiating with respect to space coordinates we should remain at the
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edge surface s5,, Since x=scosp the tangential velocity is v, =V %?COSB.
The x and y components of the fluid velocity are given by the expressions

Uy = v,cosP + v, sinp = Vcos'ﬁ(}/lcTcx + tgﬁ),

v, =10,sinf —u,cosf = Vcos”ﬂ(—y%tgﬁ-— 1),

which, however, do not reflect the physical reality in the vicinity of the
wedge vertex, at which is situated the stagnation point where v, = 0 and

v, = — V. In order to avoid contradictions, the vertex can be assumed to

be somewhat rounded, and tg g in this region can be treated as the derivative
of the ordinate of the contour profile with respect to the horizontal axis.

By the problem statement, at point K,v = gk% and %‘=?‘ Since
* k £1]
h 1 dh

— h T e ——
Ye —x.tgﬁ——h and ;;c:g_gh %

dh

Y% - &

— "
1+ g% — g teh

For small §, VI—G =9

We now derive an equation for the pressure distribution over the surface
of a wedge or of some weakly curved profile. Since the velocity potential
9=—cV{V1—F— V11—, has been specified in the moving coordinate system,
the partial derivative of ¢ with respect to time for points stationary in the
space, coinciding at the time in question with the boundary, will be

g _d9_ 99 dy dy . 99 le %9 =
il it it Also E=—V’ whendB»O, ay—»—V, while 5 =
<
_ de 1 de 5 *ah .
= - &TVT/T_:Ca‘*'dTVV 1=t =— — + V2. The above expressions were
obtained using the fact that VT—G~2.

The square of the absolute velocity of the fluid is

v’=V’+V’§_z=_V1_
- 1

Substitution of the above expressions into the Cauchy —Lagrange integral

yields an approximate expression for Ap at the contour surface:

dp _dc,
o di T—08

&
<
oS

'1_€1- (4.14)



The value of Ap is zero at point §, which is found from the expression
1 dh
Tz =V1i-4

The drag can be found by integrating Ap over the width+ Le. Carrying out
the required computations and using the approximate expression for §,, we
derive the final expression for the pressure exerted by the profile on the
fluid:

Ph=+chpdx=noV’c:~;[l—;"— ‘1'1(1+1n4‘-’-‘)]. (4.15)

=L
All the expressions obtained for the drag of wedges with low B are also
valid for slightly curved profiles, since points §, and {, are defined in terms
of Z—’:. Expressions obtained from the estimated momentum (4.13) and

from the pressure integral (4.15) are in principle approximate to the same
degree as Wagner's formula (4.11). Check calculations show that for a

wedge with B up to 30° ( i—’: up to 0.4), the values of drag calculated from

formulas (4.13) and (4.15) are close but exceed somewhat the drag
calculated from Wagner's formula (4.11).

8. Drag on a cylinder

The drag acting on unit length of a circular cylinder of radius R, being
immersed into a fluid with constant velocity v, for the limiting case of

% — 0 was calculated above (see formula (4.10)). Since c*= 4Rh and

Z_’Ll= ?§= l/ % hold approximately for small /R, formula (4.15) gives

P,=23@V’R[l——,l'—]/—%—(l+ln4]/_g)]- (4.16)

The variation in the relative drag P, =-§£ﬁ as a function of % is given in

Table 2.

TABLE 2
h

ry 0.0 0.01 0.04 0.0% 0.16

P 1.0 0.85 0.145 0.66 0.68
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It is interesting that the force attains its maximum on initial contact
at » = 0 and then decreases rapidly. Evidently, at some value of h/R
the spray-sheet root breaks off the cylindrical
surface and an unsteady transient results
7 (Figure 41).
4 | It should be noted in conclusion that potential
Transient ¢=—cVV 1 — ¢ was used by many investigators,
075} function — starting with Wagner, for calculating the pressure
\ \‘ distribution. Two points of view prevailed.
~ According to the first, due to Wagner /31/, it
050 l\‘ was assumed that pofential ¢ is confined to .
\ the x axis and that there is no vertical velocity.
S The Cauchy —Lagrange integral yields the
0.25 following expression for the pressure

0 o1 0z 7';‘ distribution:

FIGURE 41. P—_yede 1 Lys O

° " yi—pg 21—

The second point of view made allowance for the fact that the potential
¢ = — V)Y 1= pertains to the moving surface of a plate. In calculating

37“] at stationary points in space for substitution into the Cauchy—

Lagrange integral, it is necessary to take into account the transport velocity;

hence %?= — 25_;"VT_—I—_§§ + V2, The square of the absolute velocity is v* =
=Vt VZ =Vt V*I_C’—Ci = V'] ! o The Cauchy —Lagrange integral yields
the following expression for the pressure distribution along a moving plate:
p=py_yade,__ L 1plom
e =Via yi—-g +zV -

A situation resulted when the same phenomenon was described by two
different equations; the question had to be resolved as to which of them is
valid. Our preceding analysis shows that in order to match the assumed
potential distribution with conditions at points § and &, ¢ should be
expressed by equation {4.12) or, in the more general form,

¢ = —cV |f(§)_f(;k)l‘“ <4
It is found that this representation of the potential, which yields equation

(4.14), is, from the point of view of the pressure distribution, equivalent to
confining ¢ to the x axis and making allowance for v

9. Transient drag
Suppose a wedge with deadrise angle g is immersed uniformly into a fluid

with velocity &, but that the edges of the wedge are bounded and have width
2 t(Figure 42). It is clear from the previous discussion that as long as the
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tip of the spray sheet does not reach the wedge base I, the flow is self-
similar. For small B the length of the spray sheet is approximately ¢,

and the depth of wedge immersion at which the spray-sheet tip reaches the
base !is determined from the simple expression

ItgPp

2
h=?'l+ms5 :

Starting with this time, as the wedge is immersed further, fluid particles
belonging to the spray sheet will start rolling off the edges of the wedge and
internal free boundaries will begin to form. However, at the initial stage of
this process, as long as the particles rolling off the edges belong to the thin
spray sheet, it can be expected that the law governing the rise in drag will
not change substantially. However, as the spray-sheet root approaches the
edges of a wedge with width 2/, the formation of internal free boundaries will
start increasingly to affect the fluid flow and this will produce a marked
change in the increase of the drag, which up to then obeyed approximately

the Wagner formula. At high lﬁ, the flow about the wedge approximates
steady streaming (cavitated) flow and the drag may be close to the Bobylev
drag /10/.

b
Wt
]
4
(Vt'
Lol ) Hppu(pms59
g
iy
3 N2
.\? Hz \-4%—.__
] ’ H{ \ <
Bobylev's
drag
4 o [
ve g 2 3 W
Vt‘::z"_'”' ¢
=43¢
FIGURE 42.

These considerations show that, up to a value of 4 at which I=~c= %,
the drag will increase linearly according to the Wagner law; this will be

followed by a transient process with the drag P = P('—;) decreasing and
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approaching the Bobylev drag W with increasing fl- (as 4 —oo). The term

"transient function'' is applied to the expression

H(Z )= — (4.17)
U=

Drags P and W are proportional to oir?, and so function H can depend only on
-’l‘- for given B; drag W is also highly dependent on 8.

It is impossible to derive an exact expression for the transient function,
and hence we shall give below only some more or less satisfactory estimates
of it.

10, Estimating the transient function

We shall consider uniform immersion of a wedge with very small dead-~
rise angle (f —~0), with base width 2l. It is assumed that upon termination of
self-similar immersion over a width * ¢ in the coordinate system moving with
the wedge (x axis parallel to the free surface and y axis directed upward),
the velocity potential at the wedge surface and in the immediate vicinity of
the inner free boundary is expressed in the same manner as at the surface of
a plate with width 2¢ moving perpendicularly to its plane with velocity h.

Thus ¢ = — ke V 1 —(’C—r}’, where ¢ = ¢ (f). The physical basis for this

assumption consists in the fact that at the start of the transient
stage the tangential velocity of particles at the edges x = I of the wedge is
very high compared with &, and the normal velocity of the boundaries varies
continuously on transition from the wedge surface to the inner free boundary.
At the point where the particles roll onto the internal free boundary at
x =l!we have Ap = 0, since it is assumed that all the free boundaries are
subjected to a constant pressure p,.
Applying the Cauchy — Lagrange integral to the moving point x = const,
we obtain an expression for Ap at the wedge surface:

Ap o9 o 1 dp \2 op \2
C=—w |+ ()] (4.18)
The normal velocity of the wedge surface is
heosB = —uvy,cosP + v, sinf.

where v,= g—$ and v, = —g—;’; are the absolute fluid velocities in the x and g

directions. Substitution of the expression for v, into formula (4.18) yields

AT” 20 4L e 02+ tgP) (4.19)
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where tg?f can be neglected for small §.
Wenow use equation (4.2) todetermine the function ¢ = ¢ () from the condition
de

he —= .
di h
that Ap = 0 at x=1. For the point r = const, g%:_—cz—_:; and —g% = V—Czizx,;
for the point x={, after substitution of the expressions for g‘f and <% into
equation (4.19) we obtain the differential equation
Zrve—e-_L_—o (4.20)

ot 1

The most convenient initial conditions for solving equation (4.20) are
h, =0 for {=0, when!=c. The immersion depth #,is thus no longer measured
from the origin, but from the location of the wedge apex at the time when
the spray root with abscissa ¢ reaches the wedge base I (in the Wagner

approximation). Under these conditions, upon substituting l/ ,—: — 1 =sinu,
equation (4.20) gives

h ht 3 1 Pt )
o= > s o —Cosu du—ln tg(— + 5-arc sm]/T—l)— % —1. (4.21)
b

Ratio £ - V72 as u—»l, and for this value of the ratio 4 is infinite.
i 2

The drag P is calculated by integrating Ap over the wedge width & :

+ wf 4
1 s hdt 3
P=5‘Apdx=TQh'j‘ Vm—;,:—x,—-l-l dx.
-

Integration of (4.20) yields

[
14—
; 1
P=glh!|:(__;_l._ %_1)“5“,% +<2—%ml T )] (4.22)
T T ¢

The drag given by expression (4.22) depends on the ratio <, by means of

which the relative immersion depth h‘, corresponding to the given value of

P, is determined from equation (4.21).

From physical considerations the first term in brackets of equation (4.22)
expresses that part of the force which is defined by integrating %f from the
pressure equation over the width, while the second term is proportional to

[4

the square of the velocity. When T“’ﬁ 'll»oo, the inertia force defined by

the first term in brackets of equation (4.22) approaches zero, and the
transient drag approaches the steady drag expressed by the second term
of equation (4.22). It was calculated that the limiting value of the second
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term in brackets of equation (4.22), when T”—»V—Q_, is approximately ;, while

the drag on a plate in free-streamline flow is 0.88 (it was assumed in our
derivation that § — 0, corresponding to a plate). This difference in
limiting values follows from our hypothesis on the distribution of horizontal
fluid velocities over the width of the plate.

In the first approximation we determine the transient function from

equation (4.22) as the ratio of the transient drag P (:—') to wW=P (i—'-» oo). This

!
1 c2 1 ¢ 14+ —
(—;—-—]/ ,T—l) arc sm7+2(1 — g )

— -1
]

H () = T/ (a.23)

yields

From this the true transient drag is P (%) =H, (hT‘)W(ﬁ), where W @) is the

Bobylev drag for a wedge of base 2/ and deadrise angle . We note that the
transient function has been defined for $--0, i.e., for a plate; in general,
for wedges with different § allowance should be made for tgp in (4.19) and
(4.20). However, it may be assumed approximately that H, is not a function
of B and expresses the drag variation after the force increase corresponding
to self-similar immersion ceases. The transient function is plotted in

Figure 42. Different values of B, C,, (p%) and (%) are listed in Table3.

st / max

TABLE 3
, de c Py v
8. deg w (ws[ )max ( 7 )mlx

7.5 0.858 37.4 0.084

10 0.844 26.7 0.112

15 0.830 18.6 0.171

30 0.745 6.18 0.361

40 0.637 3.14 0.637

11. Some experimental results

It can be shown theoretically that the above theory of the transient
function is close to reality; here some of the assumptions were selected so
that they ''compensate' one another to some degree. Now we shall compare
the theoretical results with experimental data. First we shall refine the
general scheme for calculating the drag. We now again start measuring
h from the point of initial contact with the undisturbed level. Up to now, as
long as h<g —iitg B, the drag rise obeys the Wagner law P = nqhﬁ’(% —1)’.

P
[

If we express the Bobylev drag by the expression W =C,loh?, then = Ci—’;v X
w
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X (% —1)2; VP attains its maximum at Th = %tgﬁ at which point the straight

line %on the plot of H, =f(+’) should intersect the curve of H,(,—h>, provided

h is replaced by h, =h—h,. The value of h, should be determined from the
condition that

() =& s =)

Experimental studies of immersion of wedges were carried out by
Golovin and Zhuravlev /14/ with special equipment in which the instantaneous
drag was measured by piezoelectric transducers. The conclusions which
follow from a series of experiments using metal wedges with deadrise
angles B equal to 5, 10, 15, 30 and 45° are as follows: a) the drag on a
h 2

wedge attains its maximum at — = —tg§, irrespective of the aspect ratio;

b) the drag for large aspect ratios %during the period it rises to the

maximum (c=1{) is equal to the Wagner drag P = nghk? (% —l)“; c) after

attaining the maximum the drag variation is governed approximately by the
transient function.

Two-dimensional flow attendant on immersion of a wedge cannot be
attained experimentally, since any real wedge has some length L and width
2/. Hence the actual drag, when approaching the maximum, will always be
smaller than its value for two-dimensional flow. However, at the initial
immersion stage, when L is much greater than the wetted wedge width 2c,

the value of ‘;—i can be determined from the slope of the curve on the

oscillogram, thus checking Wagner's formula. This was done precisely in
/14/, where a graph has been constructed showing the effect of the wedge

aspect ratio 12_7 on the ratio of the real to the Wagner force.

UNIFORM IMMERSION OF A CONE
12. Immersion of a cone

The flow arising on uniform immersion of a cone along its axis of
symmetry (Figure 43) with velocity V is self-similar. In general the
theory of immersion of a cone is analogous to the same theory for a wedge.
The velocity and pressure at geometrically similar points remain
unchanged at any time, the linear dimensions increase proportionally to ¢,
the momenta and kinetic energy are proportional to #and P, is proportional
to . The relationships for the vertical momentum and the kinetic energy
of the fluid are
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B, = 5’(%>m -t
o

T—SI(P”)tﬂvaz— Lvpy, (4.24)
=)\ =g VoA
0
P
T,"—:const.

Since the vertical momentum component is

B,=—¢ {pcosnlyras,
Sa+Se

the drag is

]

B,

Py, = 5

14

D8
and the value of B, is proportional to #; -5* is proportional to 3t*and so

the ratio of the derivative to the integral is ? Thus

; Pv=—':§S S (PCOS("?y)dS=0V‘t’f(ﬁL (4.25)

§,4s

i where S is the surface. A similar result can be obtained directly by
i applying the dimensionality theory in the manner presented by Sedov /20/.
|

Spray-sheet tip ¢ ¢,
Center of T
similarity B 4 dl.t)
A 7 ~
fhomothetic ¢ / u,
center) — ¢
t=0 r= Trajectory of particle §
=37
: ,._{= S/ \ Pa
" Free surface from the approximate
s VB
\ theory
True free surface
Yy
FIGURE 43.

The normal velocity at the cone surface in the expression for kinetic
energy

d




dp

is < = Veosp, while in the expression for the momentum at the same

surface cos (n,Ay) = cosf. Hence integration over the solid boundaries can
be eliminated by expressing B, in terms of Wagner's integral, extending
only over the free boundaries of the fluid S,; this momentum is

B, = QSS‘P (cosmfy) - % j’,—‘:) ds. (4.26)
St‘

From this, applying (4.24), we derive an expression for the drag in

terms of ¢, 3—2 and cos(n:\y) at free surface S,. Here the area element is

dS = 2xnr,ds, and a free-surface arc element is dscos(nA.y) =dr,, where r, is the
distance from the point to the y axis of symmetry.

The kinematic conditions at the free surface will be the same as in two-
dimensional flow upon immersion of a wedge. Hence the velocity potential

at the free boundary is also ¢ = '22;152, where r is the distance from the

homothetic center to the free-surface point. The distances between free-
surface points remain unchanged along s (in the r,. y plane), but the fluid
particles will stretch in direction perpendicular to s. For a cone, as
previously for a wedge, the drag can in principle be obtained from Wagner's
integral by the method of successive approximations. In addition to the
condition div v = 0, the condition of equal volumes displaced by the

cone and lifted above the undisturbed level should be satisfied at each point
of the fluid-filled space (see Figure 43).

13. Case of small deadrise angles

For a regular cone with deadrise angle g8, when B — 0, the velocity at
which the pressure surface ¢ expands can be determined from the same
Wagner considerations as for the wedge in the two-dimensional case. Let
us assume that everywhere atr > ¢, at each instant, the distribution of
vertical velocities at the free surface is the same as on vertical impact
onadisk of radius ¢, floating on the surface. Fluid particle £ at point r,
moves vertically upward and, at time ¢, when r, = ¢, reaches the generatrix
of the cone, moving toward it with velocity V. If v denotes the vertical
velocity of particle rise above the undisturbed level, we may obtain a
relationship valid for that value of ¢ at which r, =¢:

]
Svdt +Vt = c(tgh. (4.27)

0
The velocity of particle § is v =Vf ('c—‘), on the assumption that fis not an

explicit function of +. The radius of the pressure surface is ¢=c(). Since

dc de
c= ot and 5 = const, we have

'g(l +—“j—)—§c"—dc =r,tgh
0
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or
e+ i)l (.2)

Velocity distribution function f (;—‘) outside radius ¢ is obtained directly

from the known solution of the problem on translational motion of a disk in
an unbounded fluid.

1 1
As is known /10/, in elliptical coordinates, y =en{and r,=c(l —pd7 ({* + 1)
and the velocity potential of the disk is o= —2n1-cu\(1 —Larcctg §).

In the plane of the disk for r, >c the curves of {=const are orthogonal to
this plane (at p= 0); therefore

v=—a—y=——-—-—— 2 a —tarccth—

Ts

Since ¢ =[(-c—)"— 1]:7, formula (4.28) yields

L h 2 ( ) —  arcctg Y (=) —1a(E) [ =
@ " %P “5 (T) (c) (,) -

R N e N R

The "momentum'' of the fluid set into motion by the floating disk to
which velocity V has been imparted normal to its surface is

4
B” = T QC’V.
and consequently the drag is
P, = 4pc* — V.
Since c=-%¢t=—*_ ¥ and the depth of immersion of the cone apex is

dt nigp
h =Vt, we finally obtain

P, = 4Vt (._) = 4gv=m( (4.29)

ntgﬁ)z

For a finite cone with base radius a the maximum value of ¢ is limited
by the value of a. Hence the maximum drag is

P ymax = 4QV’a’(n :gﬂ) .

Formulas (4.28) and (4.29) are limiting relationships, which hold as p - 0.

79



Equation (4.27) can also be written for a
2 cone of revolution of some arbitrary shape
y\\é\ (Figure 44). Let us follow some particle §,
0 < = situated at constant distance r, from the g axis,
M when the pressure surface ¢ increases from

zero to ¢ =r,. At any instant the particle rise
ert) velocity at the outer fluid surface is

vir,, ) =Vf (-:L), where r,= const,and ¢=c{t).

Since the equation of the cone generatrix
relative to its apex is y, = y,(r,), and since
44, .
FIGURE viat = —Zc—dc = dT:-dc = F(c)dc, we derive the
ar
integral equation

r

’S-(, +°_(;c‘_))%'2—dc=yw,>. (4.30)
[

Lotov obtained a solution of equation (4.30) for the velocity distribution
over the free surface with a corresponding disk:

[
dh _ d 1 Teliy (re) dry
7—7[7 S———cz_,v ] (4.302)
] .
This form is convenient for practical calculations.
It follows from equations (4.30) and (4.30a) that, for each given form of

the body generatrix y,(r,) when f(-%): -~ is not an explicit time function, the

entire problem has a unique solution, and thus function % = F(c) together

with the Laplace equation and boundary conditions express the holonomic
geometric relationship between n—co particles of a system of mass points
with n—1 constraint equations, with the result that the entire system has one
degree of freedom. The limitation on the applicability of equation (4.30)
consists in the fact that the above velocity distribution function j(r.c)
rigorously applies to the plane of the disk when r > ¢, while actually one
obtains a curved free surface and a velocity distribution different from the
above. Actually, the particle constraints for immersion of solids

into a fluid are not holonomic, and hence equation (4.30) is the closer to the

dh

reality, the smaller -

14. Application of the pressure integral for determining
the drag on a cone

It was found from a study of the pressure integral for uniform immersion
of a wedge that, according to the expanding-plate analogy, the expression for
the drag on a wedge is very close to that determined from Wagner's
integral. Hence the drag on a symmetric circular cone at not too large
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can, as inthe case of a wedge, be calculated usingthe analogy between the flow
about a cone and the flow ahead of a disk of radius ¢ = ¢ (¢) performing
translational motion with velocity V.

Unlike the classical statement of the problem on uniform translational
motion of a disk perpendicular to its plane, we assume here that only
positive pressures remain equal at the pressure surface of the disk (which
is assumed to be equivalent to the cone), while starting from point s, where
Ap = 0, the tangential velocity along the generatrix becomes constant and
the potential increases linearly along the spray sheet. This approach makes
it possible in principle to obtain agreement between the main postulates of
the exact theory of motion with a homothetic center and the approximate
identification of the flow ahead of a cone with the flow ahead of a disk.

It can be shown that both theories become identical as § — 0.
Using the expression for the potential at the leading surface of the disk,

at points 7’- = const at the surface of the equivalent disk, we derive the

expression

Y]
Q

Ve |
t

=2
R 1=z

— (1 ) (4.31)

It was assumed in formula (4.31) and subsequently that %— = {. It should

be noted that this formula does not contain the above expression for ¢, from
which ¢= 0 when r =¢, but the partial derivative

9 _Ts 9% op

O |move t O at

stat

where 3—‘:’ is determined in the coordinate system associated with the
stat

stationary fluid. Hence the assumed expression for ¢ is used only in the

sense that %% — 2. % The disk analogy is applied only to the expressions
o T o d gy pp

for % and ‘;—?; the point r at which Re potential ¢ vanishes is not determined by

the pressure equation. Equation (4.31) is similar to equation (4.14).
Since it is assumed that at the generatrix of the cone Ap » 0, point ¢
at which Ap = 0 is determined from (4.31) by the expression

s 8
S I—cg(1+?~T_—cg-), (4.32)
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For small tgf, approximately
R o/ T < P v

The resultant drag can be determined by the integral of pressure Ap over
the projection of the cone surface on the plane y = const:

P, - ?Apmdr. = 4oV {(;—t‘;—g)“u Vg gy 2 N

0
1 4 |2 | n?
% (e [+ () (439
Dividing the right- and left-hand sides of (4.33) by the limiting drag obtained
from formula (4.29), we nave
P
KB = = | — B[Ry S ] (4.34)

4qVim ( :T:Eﬁ)a teh

If the cone is not infinite and has abase radius a, then at time ¢, the
spray-sheet root will attain the radius {c¢=a and P, has a maximum, It

vt : .
follows that a = ﬁ, and so the maximum drag is
P ymax = 40V3a*K,,, (B) = 4qVa? (n—&—ﬂ) K (). (4.35)
For uniform immersion of the cone

Py (t) = Pymax (‘:_m)’.

where

¢ natgP
m= Ty

The kinetic energy T of the fluid upon immersion of a cone is equal (as
for the wedge) to the product of velocity V and vertical momentum

component B,. We refer the entire kinetic energy T —%VB, = —;-903-‘;—2

(as B--0) to the spray sheet and assume that the spray length is ¢ and the
thickness at the root is §. Since by similarity the section cut through the
spray sheet by a plane through the y axis should be approximately triangular,

the volume of fluid in the spray is found to be -g—ac’. The absolute velocity in

the spray sheet (when {>1{,), as for a wedge, is 2%: 2 .Y . hence the

energy equation yields % = g—;tg’ﬁ. Moreover, for relatively large g the
spray-sheet volume can be determined from the general energy equation
T=vVB,
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by assuming that energy -;—T' is contained within the spray, while the velocities

of all the fluid particles within the spray are the same and are given
vectorially by u=u, +u,. For points in the spray close to the root of the

sheet u, =u, = —Z;—, but vectors u, and u are directed relative to one another

approximétely at angle f. Hence u= 2% cos% . Formula (4.24) yields

T = Tl Pi. Denoting the spray-sheet volume by g, %P, hh= %". ur,

In general, the conclusions following from matching the exact theory
to approximations obtained from the expanding-plate analogy in the case of
a wedge and from the disk analogy in the case
of a cone are qualitatively fully identical and
,“"7,31 differ only by numerical coefficients.

+— Watenabe Experiments carried out with metal cones
Golovin and in which the forces were measured by
! Zhuravlev . s .
o — Shorygin plezoelef:trlc transducers show that this theory
° is in satisfactory agreement with experimental
results. Table 4 lists three values of the
05 maximum drag obtained experimentally and
e theoretically from (4.35), as well as the time
*Ol\ t., obtained by these two methods.*
<2 The entry velocity V was close to 4 m/sec,
~ the diameter 2a was 80 mm for cones with 8
0 2 equal to 10 and 20°, and 60 mm for the cone
J0 60 B, deg with g= 15°. Agreement between theoretical
and experimental results was obtained not
FIGURE 45. only for maximum values, but also for the

entire drag-time curve.
Averaged values of K (B) calculated from
the latest experimental results due to Shorygin /14/ are given in Table 5.

TABLE 4
P dyne tmy SEC
8, deg
experimental theoretical experimental theoretical
10 63.0 59.2 0.00134 0.00138
15 19.7 19.8 0.00161 0.00165
20 24 22.6 0.00280 0.00286
TABLE 5
A, deg 0 10 20 30 40 50 60 70
K ® 1.00 0.82 0.68 0.51 0.40 0,30 0.25 0.22

% The experiments were performed by Golovin and Zhuravlev /12, 13/.

83



The above approximate theory yields results close to experimental
results at angles p approximately equal to 30°. The experimental results
obtained by various investigators are plotted in Figure 45. Segment 1
of the curve corresponds to (4.34), while segment 2 was plotted from a
formula obtained by Sagomonyan which, in our notation, has the form

K@) = ( )p.ln—— and is valid for small angles p= -—*—ﬁ 0.

15. Transient drag on a cone

After the tip of the spray sheet reaches the cone base a, fluid particles,
which up to now moved along the cone generatrix, will be shed from the
edges. However, fluid particles belonging to the spray sheet already move
at a steady velocity and consequently their separationfrom the edges should
not affect the law governing the rise in drag. A cavity starts to form from
the time the spray root reaches the cone base (¢ - a), and this will result
in the reconstruction of the flow and in changing the relationship P, = P, (h).
Astheimmersion depth increases, the drag will tend tothe value of steady drag
on a cone moving with developed cavitation behind it, i.e., at 4 - oc we
have P (h) = W (h - oo).

h
Py (7;)

7 To estimate the

As for a wedge, the transient function is # (-:-) =

function H(%) we assume potential ¢ at the surface of a disk with radius

¢ >a is expressed in the same manner as on the surface of a disk (cone with
p— 0) at a>c. Here radius ¢* is actually some linear time-dependent
variable. The condition for determining ¢* =c¢*(f) consists in the fact that

Ap = 0 when r, =a. Since the potential ¢ = —%VV?_?——r? is taken in the
moving coordinate system and pertains tothe surface of a hypothetical disk

with radius ¢* >4, the equation for pregsure at disk surface a is

A Y g[V* + (%%)'L“.

At the edge of the disk r, =a, Ap = 0, and upon substitution for 2 —— and —5?—

{discarding the asterisk over c)

Ap

o T

de
Ve ., R (1 —4.;,%). (4.36)

:=|~o

n® -—

The condition that Ap= 0 at r, = a yields a differential equation for c¢=c(f):

. (4.37)

e e
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Integration, subject to the initial condition that %= lat ¢t =1, gives

S wlmelf 4 qaean TV -1 |- 3y E 1) @)

Here, as for the wedge, linear variable ¢ does not increase together with
the infinite expansion of the cavity radius, but attains a limiting value

c=a l/ ! —$ as VTt»oo. This is a natural result of the schematically
assumed potential distribution over the plane of the disk (B —~ 0) and the
region in the proximity of its edges (7 = a4+ ¢, where ¢e£a); formally these
approximations are valid when v,>» V. Itisclearthat while the distributions of

potentials ¢ and velocities %’— obtained from the assumed expression for ¢

may be close to the actual distributions at the disk surface, the
potential distribution at the cavity boundaries is quite different. An
approximate distribution of ¢ in the meridional plane r,y is shown
schematically in Figure 46.

Internal boundary

Separated streamline
of cavity

Free surface

7 /g Y 7
h W < ¢>p ”
/
/ >/ \[7 ///9’=con5t
/ —_———

Yy P<iN\ /Y-cansz

FIGURE 46.

The resultant drag is obtained as the integral, over the area of disk g,
of the projections of excess-pressure forces on the y axis. Substitution

of & from equation (4.37) into (4.36) yields

o= o 2 o] e VT T
-V T el e (i £)) -

=p‘,(§)+p;(7°). (4.39)
From the physical point of view the first term in braces of (4.39) gives the
o

unsteady drag coefficient corresponding to =; in the pressure equation, while
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the second term corresponds to ;— v?; however, these terms are related.

As the cone immersion depth increases (V# - oo) the first term tends to
zero, while the second increases to the steady drag w.

The cavitation drag coefficient of a disk as Vf -0 is ¢, = 0.82, while
the limiting value‘of the last bracket in (4.39) is approximately 0.7, which
coincides with the drag coefficient of a cone for which g = 15°.

On the assumption that the transition drag does not essentially depend
on B, we define the transient function as

(%) = "v(%)f % (%) '
Py(ool

where the relationship between — in (4.39) and g is derived from (4.38).
Then the true transient drag on a cone is obtained from the expression

P =Hl(_‘;_t)w' (4.40)

v

where the true steady cavitation drag on a cone, W = c(ﬁ)na’g—?w; , should be

determined independently of equation (4.39).
The values of the transient function calculated from the preceding
formulas are listed in Table 6.

TABLE 6
7 )
- 0.025 0.05 0.1 0.2 0.3 0.4 0.5 1.0
v
H, (—&—) 2.7 1.86 1.57 1.36 1.24 1.16 L11 1,02

As for a wedge, the transient function H, for a cone tends to infinity as

‘-;—' approaches zero. High values of H, correspond to small B, at which
the maximum value of P, is very high.

It is clear from the preceding that in calculating the entire process of

immersion of a cone during the time up to t,= %- atgﬁ drag P, increases

as a square of the time and its maximum at time ¢, is determined from
expression (4.35). Then the drag decreases according to the transient
function. Consequently, the time scales of ¢, and ¢ are shifted relative to

vt
= Hl (T) V.
We note in conclusion that the principal results of this theory are in
agreement with experimental data, particularly with respect to f» and P, .
The experimental verification of the calculated value of H, for a cone is

more difficult than for a wedge as a result of a sharp drop in the drag
after the maximum. Atthis stage a cathode-ray oscillograph was used for

one another by an amount given by P ()

max
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recording elastic transient oscillations of the system, which are super-
imposed on the transition drag. The graph of the transient function

% =H (Ka’-) is plotted in Figure 47. The theoretical results (curve 1) are
compared with experimental data (curve 2) in Figure 48. The drag
coefficients of cones with different cone angles are given in Table 7.

4
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J
|
4
|
|
3 |
\\ Wedge
5 l4\\ | Cone
n X
B=30° /( N
! S~

B=45
0l__d i “
-5 g o5 %4
Vtma: a
s
FIGURE 41. FIGURE 48.
TABLE 7
p, deg 5 10 15 20 30 45
Cy 0.78 0.75 0,715 0.68 0.607 0,465

K 12.8 5.65 3.35 2.25 1.05 0.3

SYMMETRIC IMMERSION OF BODIES AT VARIABLE
VELOCITY

16. Immersion of bodies at variable velocity

To better clarify the features of flow of an ideal incompressible fluid
brought about by a body being immersed through its free surface, let us
imagine that the fluid is continuous. We imagine that a wedge is immersed
into such a fluid with constant velocity h and, when the apex reaches depth 4,
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the wedge is instantaneously stopped by an impulsive force applied only to
the wedge. Until the wedge was stopped the velocity potential ¢, being
accumulated at the free surface differed from zero. Since the impulsive
pressures at the free surface at the time of stopping are zero, potentials
¢, remain unchanged as a result of stopping the body. The pressure
gradients during impact are directed normal to the free surface, and
therefore also the tangential velocities u, remain unchanged (see

Theorem II). It follows that stopping the wedge does not result in
instantaneously stopping the fluid flow, as would have happened in the case
of a body moving inside the fluid.

Let us assume that the velocity potential of flow being induced by the
continuous immersion of the body is ¢ = ¢, +¢,. Potential ¢, corresponds to
impact excitation of flow due to the instantaneous configuration of free
boundaries (at the free surface ¢, = 0). The accumulating potential ¢,
differs from zero at the free surface S and does notdepend explicity on the
body velocity; consequently, at the surface of the body "%= . According

to Green's theorem

o] 2/
Sw,%d3= S % s,
Sk+S Sp+S

The first integral is equal to zero, since at the solid boundaries %—t’= 0,

while at the free boundaries ¢, = 0. Consequently, the integral in the right-
hand side is also zero.

The kinetic energy T of the fluid and the vertical component of the
momentum B can now be represented as a sum of two terms:

4 ;
T= _%Sgwlgllds_%ﬁ QR dS =T, + Ty
Sk M

B = —QSS(pldx—Q SS @ dx = B, + B,.
Sk S%5,

Only the energy T, and momentum B, can change instantaneously with a
change in & ; these two former quantities can be represented in the term
of "impact'" induced mass m*using the ordinary expressions

T, = *’;_z- — m*}
y=m"—5. B =m

Formally the impact induced mass m* can be calculated by solving the
boundary-value problem for each configuration of boundaries, as is the
case with the induced mass of a floating body.

From the energy and momentum equations the pressure force of the body
on the fluid is expressed by two equations:
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The time derivatives of T, and By are

DTy _ s L _dm*
D hh+ dt
DB, . dm

o oM h+h dt

The time derivatives of T, and B, can be treated as the energy and
momentum fluxes to the spray sheet. Denoting the mass flux by ¢Q, we find

that 2T DT’ b B’

= Q5 % and = — oQu_ sinB; velocity u  and the spray-sheet slope

B can be determmed from the spray-root analogy. We thus have two
independent equations for the pressure force of the body on the fluid:
the energy equation

the momentum equation

P =m*h + h fdﬂ;——— 0Quy sin B,

which contain the thr:_ee unknowns P, m* and Q. Hence we make the additional
requirement that at 2 = 0 each of these equations should express the force
upon uniform immersion, always expressible as

M,
Po—- hT

We note that M, has the dimensions of the induced mass and can be
determined quite easily from the expression for the force during uniform
immersion.

It should, however, be remembered that M,, which shall be termed the
"apparent' induced mass, being multiplied by the acceleration k does not
vield the reaction force of the fluid on the acceleration of the body. Thus,
at =0,

2

%—(Mo——m*)=QQ:—;:-;

a u sinf
-d—t(M" m*)=—QQ————
h

If ,u" =k, then upon elimination of ¢Q

2h sin B

dm* AL+ B My

dt %+ 1 dl

Integration of both parts of this equation with respect to the variable M,
gives

M,y
2(14 4
mt=S Ty dM,. (4.41)

1]
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Returning to the starting equations, we find that the pressure exerted
by the body on the fluid is determined from the general formula

P=mh +220 b (4.42)

In particular, the value of % in the integrand of (4.41) is constant for a

wedge, and that when B -0, £ —oo, and when B~ % k—»%(%—ﬂ) —;—p,
hence $-0; m* ~ M, p—~ <-; m* - 2M,. Formulas (4.41) and (4.42) are equally

valid for symmetric immersion of two-dimensional profiles and for the
immersion of axisymmetric bodies.

17. Principal energy and momentum equations

The preceding conclusions make it possible to calculate the energy and
momentum of the fluid in the free stream (7, and B,) and in the region of
the spray sheet (T, and B,). It follows directly from equations presented in

the preceding section that T, = B,%; hence Wagner's integral is

I, = 2T — Bh = 2T, — B,h.
On uniform immersion

Ty = (Mo— % m*) il”; By = (M, — m')fz.

It follows from Section 16 that in all cases m* > M, > %m‘. For bodies

close to a plate or disk (wedge or cone at p—0), m*>M,; hence T,>T, while
B,> 0. The energy for the immersion of such flat bodies is divided
approximately equally between the main flow and the region of the spray
sheet, while the momentum of the main flow comprises the principal
contribution to the expression for the force.

Using the tangential velocity u, estimated from the spray-root analogy

for 8 -0 and B —»%, it can be shown that for the entire range of g the

integrand in (4.41) can be approximated by

1
i =1 — % cosh. (4.43)

Consider the immersion of a wedge. It follows from Wagner's formula

that My = Seh?(4-— 1 ', substitution into the principal equation (4.42) yields
ot princip y

P= n(%-— 1)I[th2 +(1 —%cosﬂ) gh’h']. (4.44)

5922 90

35



The expressions for calculating the forces attendant to nonuniform
immersion can be obtained for any body, if the force attendant to uniform
immersion is known and, conversely, from a known induced mass m*,
calculated for the case of impact on a floating body, one can determine the
force attendant to uniform immersion.

For ''slender' bodies when ;ﬁh —~ 0, the drag is given approximately by

the formula

©dm*

..
P=m*h+ h T (4.45)

In the sense of the derivation of the preceding equations, m*is the impact
induced mass, determined for the case of impact on a body floating on the
free surface, distorted by the preceding continuous immersion.

For very slender bodies (p — %) Mo_>_—; m*; hence the momentum of the
main flow is B, = m*4, while the momentum of the spray-sheet region is
found to be halved, i.e., B,= ——%m*h. The kinetic energy in the region of

the spray sheet is close to zero, and the main part of the kinetic energy is
concentrated within the main region of the flow.

For symmetric immersion of a circular cone it can apparently be
14k 1

assumed that, as for the wedge, m—l~l —3

cosf. Hence, from the preceding

formulas,

m* = 2(1 —-%cosﬁ)Mo.

The apparent induced mass for a cone is M, = %Qh’f(ﬁ), where

J@® =4 (ﬁﬁ)s K@ . Here the value of function K@) is shown in Figure 45,

According to (4.42), the final expression for the drag is

P = [Qn=h= + etth Z{1 — L cos s)] £ 6). (4.46)

Formula (4.46) can be used for practical calculation of P; however, this
expression disregards the friction force.

18. Application of the Wagner integral to calculation
of drag

Consider the rectilinear immersion of a solid body into a half-space filled
by a weightless incompressible fluid. As above, the wetted surface of the
body is denoted by S, and the free surface by S. The body moves with
velocity V; the velocity potentials at surfaces S, and § are respectively
denoted by @, and ¢..
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The kinetic energy of the fluid is determined from formula (2.7).

Since the normal velocity of the fluid at surface S, is % =nV, division of

integral (2.7) into two integrals over §, and S gives

— - O
27=—9VS%"‘13—@S%—§:—43=2713 + 27,
Se 5

The momentum of the fluid according to (2.14) is

E=—05 ‘Pk’;ds“'Qg(Ps;lds=Bk +Bs'
S §

Elimination of the integral ng)k;lds from the first and second expressions

1%
£

yield the Wagner integral:

I, =2T —VB = }SVQ(pSndS—QS(pg 2 45— o7~ VB, (4.47)

which does not involve integration of ¢,

We now note some properties of Wagner's mtegral.

1. The Wagner integral attentand to the impact excitation of flow from
rest is zero for any free-boundary configuration. On impact excitation of
flow, ¢, = 0 at the free surface both before and after impact. Hence

T=;'2-V3whi1e /w = 0. The energy and momentum in this case can be expressed

in terms of induced masses, which are uniquely determined by the configura-
tion of the wetted surface of the body and of the free boundaries before
impact.

2. The Wagner integral for uniform motion (V = const) is equal to the
kinetic energy of the fluid which, in turn, is equal to the scalar product of
the momentum and velocity vectors. Integration of the energy equation
(2.13) for @ =0 and ¥ = const yields

=V (Pdt =VB.

e )

Substituting this result into (4.47) gives I, =T, Differentiation of the

Wagner integral with consideration of the fact that %g =P yields

dly i &z pdB _pp_ 4V g
ey N BV PV —FB
= dl gy dT == = .
At V = const, —~ = — =PV, where P is the vector of the pressure force on

the fluid.

di
Expanding the expression for -d—w

— and substituting the value of B into the

last equation, we have
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1T, dv = 7d - d Ip
PV=—e—d,—SWdS+@V7Swsnds—eggws-a—,f-ds, (4.48)
Sp S N

or, using the preceding expressions for the integrals,

d

dv 3 vAaig
F B+ 25 Ts—V 5B (4.48a)

PV —

Figure 49 depicts the flow pattern on entry of the body into the fluid. The
space occupied by the fluid can be divided into three regions, designated
respectively I, II and III. Region I {(main flow) is bounded by surface S of
the body, streamlines moving from points C, where free boundaries form,
to the zero-potential surface v and then along it to infinity. Integrals

2 = -
Th=—%g (pkol: dS and B, = —QS ¢,ndS express the kinetic energy and

momenst‘{lm of the fluid in regsikon I; the energy T, and momenta B, shall be
termed bound. Region II (region of the cavity) is bounded by the inner
free boundaries CK, segments KD of the zero-potential surface and
streamlines CD.

FIGURE 49,

Region III (surface region) is bounded by the zero-potential surface and
the free surface, situated above it. According to Sections 10 and 11 of
Chapter Two, if the excess pressure at the zero-potential surface is zero,
the rate of propagation of surface v is equal to half the velocity of the
fluid at this surface and the volume of region IIl is equal to half of the
volume displaced by the body and the cavity from the initial fluid region.
When the zero-potential surfgce intersects the inner surface of the cavity
or the surface of the slender body these conditions are also approximately
dT, dB, =
T=E, - = 71, where E and
7l respectively are the energy and momentum fluxes through the zero-
potential surface 1, while T, and B, are the kinetic energy and momentum
contained in region IIl. For slender bodies formula (4.48a) makes possible
a quite simple calculation of the pressure exerted by the body on the fluid.

satisfied; the results show that in this case
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19. Axisymmetric immersion of a slender body

For immersion of a slender body (Figure 50) X = f (), the preceding
equations can be simplified and hence some specific results can be obtained.
In addition, this case illustrates the
application of general principles presented in
the preceding sections, We note that in this
case the cavity region II does not exist and
only regions I and IIl are present. From
equation (4.48a) the pressure exerted by
the body on the fluid is

The projection of an element of the body
surface S, on the horizontal plane is

I F dS,, = ndS; the velocity potential at the body
surface can be expressed in the form
FIGURE 50. ¢, =— Bk (%), the distribution function @ (x)

being unknown. Integral -—2 ( ndS =
Sk h ‘S
” k
= Qj h® (x)dS,, = m* (h,©) clearly expresses the induced mass in the direction
of h® Thus, the first term in the expression for the force is m*h. The bound
energy and momenta, respectively, are T, =m* —;-z and B, = m*h. However,

the induced mass m"(h, tydepends not only on the shape of the body, but also
on the location of surface 1, and this surface is unknown. It is virtually
impossible to obtain an exact solution of the problem, but an approximate
solution can be obtained. For this we must disregard the forces acting on
the fluid along segments KC and use expressions for the energy and
momentum fluxes through the zero-potential surface. The pressure force
exerted on the fluid can be determined, on the one hand, from equation

(4.48a) and, on the other, from the expression P = ‘:T(BH' B,). Using the

expressions for the energy flux £ and momentum flux [1,through the zero-
potential surface, we derive
P=mis 2 o, = mh+ S, (4.49)
h

For a slender body the value of E can be neglected, compared with I1,,
as being a higher-order infinitesimal. Hence for a slender body we have
approximately h%’—'—- 211,=0 or B,—2B =0, i,e., the momentum of the
main flow B,is directed downward and is twice as large as the momentum
of the surface region, which is directed upward. Equation (4.49) yields
a limiting expression for the pressure force exerted by the body on the
fluid, obtained above in Section 17 by a different method:

dm”
T

P::m*){-}- -;—h
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Finally, to calculate force P one may (using the method of sources and
sinks) calculate velocity v at surface t and then find I, by direct integration.
Here it is necessary to satisfy the general continuity equation, according to
which the volume of the surface region is equal to half the volume displaced
by the body from the initially undisturbed fluid. The second method of
calculating P consists in finding the induced mass m*, This question is
examined in the following section.

It can be found from the spray-root analogy that the horizontal and
vertical velocities of point C are approximately the same, while the
tangential velocity of point K is approximately halved. If the body contour
= f(y) is specified, then point C is determined from the condition
;C::f(h + ;C), while the distance from point K to the tip of the body is

W=kt pxee

For a slender body surface v is close to the horizontal plane. Hence the
induced mass of the same body, floating on the horizontal surface and
submerged to depth #', is very close to the sought induced mass m*

20. Induced mass of a slender body

Figure 51 shows a slender body whose contour is described by the

equation R = f(n). This body floats on the free surface AB of a fluid filling
the lower half-space. If a velocity & is imparted
impulsively to this body then, according to the above,

0y the velocity potentials at the free surface will be zero

and, using the symmetry principle for calculating the

\ flow, we may supplement the lower part of the body by

/ \ its mirror image in the upper half-space and consider

[ the motion of this "doubled' body, at velocity A, in an

R infinite medium.

i1 The velocity potential at infinity (r + o) is now

[ | calculated from (2.26) or (2.27), respectively, for the

| 8 two-dimensional or axisymmetric case. The integral

—j ndp =+ Qh is equal to the "true' volume Q of the
Spts

< ] submerged part of the body, while the velocity potential
(for axisymmetric flow) is

cosf (1 ' hcos® ( m*
9 rcar = Bart {E By - hQ} =TTt {—Q— + Q}-

ot}

FIGURE 51. This value corresponds to the potential induced by the
"true'" body, supplemented by its mirror-image
transform for motion in the y direction with velocity 4.
As is known, the flow of a fluid induced by a slender axisymmetric body
can be represented by a system of sources distributed along the longitudinal
axis. Let the density of sources at the axis of symmetry be y(n) and let this
source distribution correspond to the body R = f(n). It is possible to select

another body R’ ={'(n) which is defined by the condition that y(n) = h2nR’ ‘2—’:'.
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The velocity potential of a single source is :4},(;‘)_, where r’ =r + ncosf, while
r is the distance from the coordinate origin to the distant point. Since

;]— —~ 0 when r - o, we obtain for the potential

+h

+h
. 1 h 2]
cv,..m=——,,,~5v(n)d gv(n)ndn—— ;:,),sz Q.
Zn a

The integral in the first term is zero, since the total source flux should be
zero. The integral in the second term is the moment of the doublet.
Substitution of the expression for y () yields

+h L th AR’ _th .
S Y (M) ndn = h S 2nR’ “an ndn = h S 2nR'ndR’ = 2Q'h (4.50)

—h —h —h

Quantity @' shall be termed the "fictitious' volume. Since sources y(n)
correspond to the "true" body, ¢=¢ (@s r—»oo). Since B, = —m*h, we have
finally

Ill

=Q-0Q (4.51)

Theorem XIX. The volume of the induced mass corresponding to the
longitudinal motion of a slender body is equal to the difference in the
fictitious and real volumes of the body.

For a body with given shape R = f (n) one determines, somehow, by one of
the available methods its corresponding system of sources y (n)and then finds
the value of Q from (4.50). The sources and sinks yield the relationship

. Rwm . L 1
aR*h + S 2nxv dx = Sy () dn = nR*h,
] =h

Since d(Q —Q) = n(R'*— R%»dn, the expression for the volume of the induced
mass has the form

0 Ry
m‘

U A~ N
P =2n Sdn § —h!,-xdx.
—h

where "
-1 9 Y (n) dn
=g | e

VI I Vawene
Ve

The induced mass m* pertains to body Q. However, for a very slender
body m*can be approximately referred also to body ¢. The volume of the
induced mass is crosshatched in Figure 51. In general the longitudinal
induced mass for slender bodies of revolution amounts to only several
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per cent of the volume of the submerged part of the body. Thus,
Sagomonyan derived the following expression for the drag on immersion of

a slender cone with vertex angle 2u: P = nohh®u! ln“l . The induced mass can
be determined from equation (4.45): m* = 2%Qh"p.‘ lnﬁ-. The ratio of the

volume of the induced mass to that of the body is % = 2u®ln %; if uw=0.1,

this ratio is equal to 0.0486.
It follows from equation (4.49) that for a slender body, when E can be

neglected, hd—':t: =1,. Hence, for a body immersed with constant velocity,

the pressure force is

p=n,=S%2n}d}. (4.52)
R

The integration is carried out over the free surface from the body surface
R to infinity.

The free-surface velocity distribution can be found by the method of
sources and sinks. Thus, if a unit source Q is immersed vertically with
constant velocity 4, the pressure on the stream surface containing the
entire flow starting with the source will, for immersion « of the source,

be 11, = %cos‘ 6,, where the source strength is determined from the

expression aR% + QI —cos6,) = Q, while g =tg8,. For a slender body angle

R?

6, is small, and approximately P, =1, = QnR”h‘% .

21. Fall of a body on the surface of a fluid

Consider the simplest case of symmetric fall of a body with mass M, on
the surface of a fluid. Suppose, at the first contact (¢ = 0), the body has
velocity V,. If we neglect the weight of the body and the fluid, the
equation of motion has the form

Drag P is a function of the shape of the body and for the shape at hand
P=Ph nk.

Integration with respect to time using initial conditions yields the
following expressions for the momentum and energy:

t
M,V — V)= — [ Pdt = — B ()
']

vV :
Mb(T _ _2‘1)=_SPth=—T(t).
[

97



These equations make it possible, in principle, to calculate for each instant
the velocity V (f), momentum B () and kinetic energy T (9 of the fluid.
However, these quantities cannot be expressed in terms of the instantaneous

values of the induced mass by the expressions B=m* Vand T = m* %2, since

here the two equations (energy and momentum) are incompatible. If we
still use these expressions for B and T, then, from the momentum equation,
i LM, where p =A'"T;. Here the
kinetic energy of the body-fluid system following impact will be smaller
than the kinetic energy of the body preceding impact by the "lost" energy
MV B _

2 T+p°
induced flow. For cases of immersion of sharp-nosed bodies this 'paradox"
is eliminated for an incompressible fluid by allowance for the momentum
and energy of the spray sheet, as shown in Section 16. It remains to clarify
the question of impact of bodies coming in contact with the fluid
simultaneously over their entire surface, such as a disk or plate. If the
body and fluid are incompressible, then formally, from the known impact
theory, the entire momentum and the entire kinetic energy are determined
by the induced mass, there is no spray, and the above ''paradox' cannot be
eliminated. A more detailed study shows that allowance for compressibility
must be made in the case of simultaneous contact of the surface of the kody
and the fluid. The 'lost' energy is found to be carried away by a shock wave
and its magnitude does not depend on the speed of sound.

the velocity following impact will be V =V,

But loss of energy is incompatible with potentiality of impact-

22. Principal equations for compressible fluids
Flows with velocity potential ¢ = ¢ (x, .2.t) obey the continuity equation

_aa% +div(gr) = 0, where o = grad ¢, and the Cauchy — Lagrange integral is

1 dp
+7w+S?—U=Fm

¥

The pressure ratio s for quite poorly compressible fluids is very small;
hence @ =¢,(1 +s)and p = p, +xs, where x is the bulk elasticity modulus

®= QOZ% »while g and p, are respectively the density and pressure of the
undisturbed fluid. For s« 1 the pressure function is

dp b3 ds ® P
—_— = — =3 const = ¢%s + const = -— const,
S ¢ T& )T et ot

where ¢ is the speed of sound.
It can be shown by estimating the terms in the expression for pressure
attendant to short-duration impact that, for v&c, the term 2lv’ is small

compared with ? and Sd—:; for a fluid at rest at infinity F() = i’-. Hence

differentiation of the pressure equation yields
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Ll .o _
o +Q-0' ot 0.

To the same degree of approximation we set in the continuity equation

div (pv) =g,divv. Since %Q = % . Z_” , we derive 5—»— +c*Ap= 0. Eliminating
0 0

ap . . .
< o from these expressions yields the known wave equation

Ix =g (4.53)

In the case of spherical symmetry, when ¢ = ¢ (r. #), the wave equation has
the form

oUgr) _ 3 P (er)
o = ¢ o (4.54)

Equations (4.53) and (4.54) pertain to the field of acoustics.

23. Simplest case of impact

Imagine a tapered tube with small solid angle Q, bounded by rigid walls
and filled with fluid at all directions r > R. A mass impacts at free surface
RQ with velocity V,. The solution of wave equation (4.54) for diverging waves
has the form

(p=%f((:t—r+ R).
The excess pressure in the fluid is given by the expression
Ac .,
Bp=ptr. t)—po——@-—— —o~flet~r+R)

(the prime denotes differentiation with respect to the argument).
The radial velocity is

u=—=——f(ct——r+R)-——f(Ct—f+R)

1
Noting that —ep(r,5) = ‘{Ao (r.ndt and using the expression for the radial

0
velocity, we derive the known expression
t

1
+5$ana
0

_bo¢n
v(r,t) = ™

Now we establish the relationship obeyed by mass m after impact.
Considering, due to smallness of Q, the motion along the axis of symmetry,
we have the equation of motion
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m% =—Ap(R,)S

0RS
m

The impacted surface is S=RX2, the induced mass is gR%Q, and p=
is the ratio of the induced mass to the mass of the impacting body. Using

the expression my,—uvR,H =S (Ap(R,t) dt and the expression for v(R,t), and
4

setting 1=, we have the equation
g =2 q
dv 0
e+ +pv—y = (4.55)

The solution of this equation with initial conditions ¢= 0 and velocity
v=uy is

v =21 4 pe=+mY,
ET ) (4.56)

It is found that if on contact v =y, then with time, as the wave front

moves deeper into the fluid, v— li—“”, which corresponds to the case of

"hard" impact. Obviously, as in Section 21, the kinetic energy of the
body as t -+ o is

Y% n
T= M  True
and the "'lost" energy is
. A u

We shall show that the ''lost" energy is equal to the sum of the potential
and kinetic energies carried away by the shock wave. The potential energy

us?
2 2

and the kinetic energy is &,

of compression of a volume of fluid is -

where u =%§, while the pressure in the acoustic wave at r=Ris

<!
Ap = rovue_““"f. Calculations yield

a3
2 3 2 _ 3
E, = SS(L;— + Qu-Q—)d(Cf) =m % . &;(1 —e m+mR)-
[{]
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As was pointed out, the ''lost' energy as ¢t -~ oo does not depend on the
value of ¢. Postulating that the fluid is incompressible, we assume that the
speed of sound is infinite. This eliminates the previously mentioned
"paradox."

The above case is of interest only as an example for gaining insight into
the process of impact. Actually impact of a body on a fluid is accompanied
by generation of shock waves which move into the fluid as well as into the
body. For bodies of complex configuration these shock waves are partially
reflected from structural elements and set the impacting body into complex
oscillations. The study of oscillations of a body and conditions of its strength
on impact on water is a complex scientific and engineering problem.

24, Limiting cases of motion

Experiments were carried out in which a disk with a very small mass was
shot out perpendicular to the water surface in such a manner that it
impacted on the surface over its entire plane. The experiments were carried
out in two versions. In the first a spike was placed in the water, at small
depth, below the center of the disk. This spike stopped the disk when the
latter hit it. In the second version the spike was removed. High-speed
photography showed that after hitting the spike (first version) a spray
sheet rises from the edges of the disk and a cavity forms behind the latter.
After the disk stopped, the cavities tore away from the disk and within a
short time the cavity became almost spherical. When the spike was taken
away (second version) the disk removed some of the surface of the cavity,
the shape of which also tended to become spherical with time. Analysis of
experimental data showed that the kinetic energy enR3R? corresponding to
inertial expansion of a hemisphere remains virtually constant during the
entire expansion of the spherical cavity, and equal to the kinetic energy
lost by the disk.

The problem of the limiting motion of a light disk of mass m, and radius
R, at the boundaries of the cavity was solved theoretically. For a near-
spherical axisymmetric cavity the deviation of its spherical coordinates
from a sphere with radius R can be expressed by a series in the form
r—R =8P (cos®) + ... +EP,(cos¥), containing Legendre functions. The velocity
potential is also expressed by a series containing functions of the form

+2,
_1_1 . %’LPH (cos®). Retaining only semiquadratic terms in the pressure
n+

equation, defining the velocities as v, =§, + 2% ¢, and using the equation of

motion of a disk, we can find an approximate solution to the problem in the
form of equations:
3 - me |
7R+ (R + )R =0
.. .. . moB
RE, 43RG, +(1—m RE = —(n+ D2n + D oo
Since we considered cavities in the lower half-space (impact through a hole
in a screen), the second equation is valid only for even n.
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Without dwelling on the details of the solution, we only point out its
results: a) the cavity shape tends to spherical as the body penetrates
deeper into the fluid, when the body and fluid are weightless, while the
pressure inside the cavity is equal to that in the quiescent fluid; b) the
induced mass of a disk at the boundaries of an expanding cavity increases
in proportion to the bubble [cavity] radius R; c¢) as the cavity shape tends
to spherical, the travel of the disk center is greater than the bubble radius
Mo
JIQRZ )

by an amount tending to

The general methods and specific equations presented in this chapter
allow one to calculate the hydrodynamic forces acting on immersing bodies.
In addition to forces, it is also possible to calculate approximately the flow
and the shape of the free surface. It is of importance that the integral
effects, as the total forces, momenta and energy, do not depend markedly
on the potential distribution over the surface of the body, but instead it is
necessary to select a flow pattern which satisfies all the general equations
and physical conditions within certain flow regions. This pertains
particularly to the spray root.

Consideration must be given to the important features of free-boundary
flows. The most important of these consists in the fact that the potential
is "accumulated" at the moving free boundaries during the entire motion.
Hence a free-boundary flow cannot in general be stopped or induced
instantaneously and is not determined uniquely by the value of normal
velocities at the boundaries of a moving body. The induced mass has the
same physical sense as in the case of bodies fully immersed in an infinite
fluid; the magnitude of the associated mass is no longer a universal constant
for a given body but depends also on the history of the motion. An ideal
incompressible fluid with free boundaries can be treated as a system of
material points with ideal constraints, butin general these constraints are
not holonomic. The displacements of the body are no longer generalized
coordinates in the Lagrange equations, and the application of these
equations is in general impossible.

Obviously, features of free-boundary flows must be taken into account in
solving specific problems. In spite of the fact that above we considered
constant-pressure free boundaries, the same considerations apply to a
greater or lesser extent to any surfaces of discontinuity moving from the
surface of a body into a fluid.
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Chapter Five

DEVELOPED CAVITATION

Developed cavitation arises behind bodies rapidly immersed into a fluid
or moving within a fluid at sufficiently high velocities; developed cavitation
sets in also at moderate velocities, if gas is injected at the rear of the
body.* A detailed physical description and analysis of mechanical aspects
of the development of cavitation and, in particular, of developed cavitation
are given by Sedov /19/.

Since it is generally impossible to obfain exact solutions to individual
problems, the subsequent presentation is based on approximate estimates,
supported by experimental data. The gist of what follows was presented
in /14/, where the main experimental data are also given.

A developed cavity behind a body when observed visually appears to be
formedinitsleading part by smooth free jets separating fromthe body surface.
Only in the trailing part of the cavity, where its boundaries join, does one
see a bubbling foam mass, which is carried away from the cavity together
with the gas and vapor. It was found by high-speed photography with small
exposure times that the cavity boundaries, even in the leading part, are
hardly ever particularly smooth; they are mottled by small disturbances,
projections and droplets. Hence below, in our study of "macroproperties"
of cavities, these will be schematized by assuming the free boundaries in
the leading part to be smooth. This representation corresponds to the
ordinary formulation of jet flow problems.

An important physical characteristic of cavitation flow is the cavitation
number, which is defined as the ratio of the pressure difference between

the free stream (p,) and the cavity (p.) to the velocity head g= gV?-i. The
2(po—pk)

2
part of which is free of foam, form when o< 0.1—-0.2.

In fact developed cavitation phenomena are affected to some extent by
viscosity, surface tension, boiling temperature, dissolved-gas content
and, at very high velocities, fluid compressibility. However, for fluids,
such as water, at velocities not exceeding several hundreds of meters
per second, moderate body dimensions and temperatures far from the
boiling point, all the above factors are practically inconsequential. This
makes it possible to treat the fluid, in general estimates of mechanical
properties if cavitation flows, as ideal and incompressible. A schematic
of a cavity in a flow past a disk is shown in Figure 52.

cavitation number is therefore o= Developed cavities, the major

¢ In the USSR, in 1945, Epshtein obtained developed cavitation by the injection of gas.
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FIGURE 52.

1. Cavity drag

Experiments in cavitation [water] tunnels show that the drag coefficient
of each body placed in a cavitation flow depends on the body shape and on
the cavitation number. For bodies with smooth outlines (sphere, ellipsoid,
etc.), Epshtein and Tseitlin noted that the line of streamline separation
from a body surface is not given uniquely by specifying the body shape and
cavitation number, and its location depends on the properties of fluid
adhesion to a body, absolute flow velocity, and various other causes. The
shifting of the separation line for bodies with smooth outlines somewhat
affects the drag coefficient.

When the body has fixed streamline separation lines (disk, cone, etc.),
the drag coefficient in an ideal incompressible and weightless fluid depends
solely on the cavitation number:

Wo
G=—"L7 =), (5.1)
nQT

where the drag coefficient is referred to area S,, bounded by the stream-
line separation line; for a disk with diameter 4, = 2R, this area is S, = nR}.
The drag coefficient attains its maximum value at 0 =0 (¢, = cx); for a disk
and cones, the flow past which occurs along the axis of symmetry, the
values of ¢,, are listed in Table 8.

TABLE 8.
B, deg 0 5 10 15 20 30 45
x0 0.82 0.78 0.75 0.715 0.68 0.607 0.465

Epshtein reduced experimental data and showed that the drag coefficient
of a disk at nonzero cavitation numbers is expressed by the simple formula
C=Cw(l +0)= 0.82(1 +0). Apparently the same relationship applies for
blunt-nosed cones, but for very sharp cones and wedges it is more proper
to use Sedov's formula, c,~c¢w+o0 /19/. Experimental data for a disk
and cones can also be found in /29/.

104




Special experiments showed that if the disk is inclined at angle § to the
undisturbed flow surface, then the pressure force acting normally on the
disk is W, = Wos8, where W, is the drag of the disk, the plane of which is
perpendicular to the direction of the undisturbed flow. Quantity W,is
obtained from (5.1). Projecting force W, on moving x and y axes, lying
in the plane of angle §, we have

W, = W,cos%; W, = W,cosdsind. (5.2)
Experiments show that expressions (5.2) are valid only for 8 < 45—50°.

Note. The drag of a disk at 8=0 can be calculated from Bernoculli's
theorem, if the distribution u () of radial velocities at the disk surface
is known.

The drag, which is equal to the pressure difference at the leading
and trailing surface of a disk with radius R, can be expressed in the form

b vz &
W, =S p2nrdr — R: p, = nR2 (B, — p,) + %9 ( - V_;) 2nurdr.
b b 0

To obtain agreement between this expression and the observational results
v

of Epshtein we assume that 7’—_—.[(—1;—) does not depend on the cavitation
L n

number, while the velocity at the cavity boundaries is v, =v,¥T+ae. Sub-

stitution of I(%):f(u) in the preceding expression for the drag yields
n.
Ve L
W, = k2 9_29[(1 +9) (1— S P(u)dul)].
0

Function —!;-/'-r_f(u) can be expressed approximately by a parabola in the
& 1
form l",—’ =u, selected so thate, =1— S P*(u) 2udu = 0.82' calculations yield n = 4,55,
1

Q
Fedorov's experiments with measuring the pressure distribution at a
drained disk showed that the above velocity distribution is close to that
actually observed.

2. Shape of an infinite axisymmetric cavity

Axisymmetric flow of an infinite fluid past a disk at ¢ =0 corresponds
to the well-known Kirchhoff two-dimensional free-streamline flow.
However, in the two-dimensional case one can obtain an exact solution,
while its corresponding axisymmetrical problem cannot be solved com-
pletely, and the cavity outline is known only approximately.

The shape of an axisymmetrical finite-drag half-body was studied
independently by Gurevich /4/ and Levinson /1/. They derived the result
that a half-body whose profile is R = f(x), placed in an infinite parallel
stream along its x axis of symmetry, can have a finite drag if at infinity

~

X

4 ~

In x

{x -~ o) the equation of the profile has the form R = const. Here the
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constant is = 1,34 ifitis assumedthatthe disk radiusis R, =1, while = l;— and

R = £ are understood to denote the relative cylindrical coordinates of the
contour.
Another derivation of the contour equation of an axisymmetrical cavity

can be obtained from energy considerations. We can assume that the
kinetic energy of absolute motion of a fluid per unit length of the cavity
meridian is constant, and equal to the work of external forces which
overcome the drag while the body travels through a unit path. For a
uniformly moving body the cavity is treated as a wake, which contains
the energy expended in overcoming the body drag. The specific energy
content far past the body should be constant and its only form in the case

under study should be kinetic,
When p, = p, (0= 0), the absolute velocity of boundary particle & is

v = V,sin 5 while the normal velocity is v, = Vysina = R, where o is the

angle between the tangent to the cavity boundary and the x axis, and R and
R are respectively the distance from the x axis and the radial velocity of
point ¢ in its absolute motion (Figure 53).
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FIGURE 53.

The kinetic energy of the fluid within a flow tube starting from points
s and s+ ds at the cavity boundary will, by assumption, be

dT = — £ ¢2nRRds = WV,dt. (5.3)

The relative velocity V, of the boundary particle is equal to the trans-
lational velocity V, of the body; hence we can set Vit =V, dt= ds in (5.3).
The variable part of the potential at points in space coinciding with the

boundary is ¢ = — %l Substituting ¢ into boundary condition g—‘t’-;.—;o” =0,
RR

and replacing v by R by virtue of the smallness of angle a, we have
S TR Y

Hence

Vi 5.9

R=__ 10
R VinR+A
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Constant of integration A can be determined if angle a at some point
(R,, %) is known. This condition is necessary in order that angle a at
this point be small.

It was seen from processing photographs of the cavity formation
behind a disk, that the profile of the leading part of the cavity

(l%‘<3—5) can be expressed approximately as R =R, (1 +3X )”’ and
this expression is valid for small cavitation numbers (o < 0.1).

Selectmg 2 =2 as amatching point we have dx(l +32 )—m: 0.274 and
R, = 1.92R,. Substltutlon into (5.4) yields A= 0.845—1inR,. The cavity
profile equation for En>2 has the form

w=2+ VZ

£0

RV nR + AdR,

ﬁﬂ/\.xl

R(x

The numerical values of coordinates of the cavity profile calculated
from formula (5.5) are listed in Table 9. The profile is shown to scale
in Figure 53; theoretical and experimental data are compared in /4/.

where R =

TABLE 9.
x
R 0 0.5 1.0 2.0 5.0 7.5 10 15 20 25
n
R
r 1.0 1.36 1.59 1.92 2.57 2.95 3.30 3.85 4.35 4.8
n

Note. The matching point x =2 was selected arbitrarily. It would
have been more natural to subject the solution with constant 4 to the
condition that small variations in x or R, do not change the value of 4;

this condition corresponds to —i = 0. The empirical equation of the profile

yields the expression R = % which, after substitution into (5. 4) and dif-

ferentiation, yields a condition for determiningthe matching pomt =Re

lln

1
¥ = 0. This yields R =1.1. However, then the requirement that ‘;ﬁ be

small at the matching point is not satisfied.

3. Application of the momentum theorem to the
determination of the drag and dimensions of a cavity

Some useful information on flows with developed cavitation can be
obtained by applying the momentum theorem. Consider a steady axisym-
metric cavity with nonzero cavitation number. We denote the pressure
in the flow at infinity by p,, which is higher than pressure p, within the
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cavity. The stream velocity at infinity is V,; as a result of disturbances
in the vici\nity of the cavitz the stream velocity components are V, =V, +u,
and V, = v,, where v, and vy, are the perturbed velocities.

The contour of a physical cavity behind a body (mouthpiece) NN with
wake form in the trailing part is shown by solid lines in Figure 54. The
wake flow behind the cavity, consisting of foamy, bubbling fluid. vapor
and gas or, in some cases, of a vortex system, affects the entire
cavitation flow. This effect will be estimated later; at present we shall
consider the Ryabushinskii model, when a symmetric cavity is formed
between two identical mouthpieces NN and N'N' (dashed lines), so that the
cavity is symmetric relative to the plane KK.
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FIGURE 54.

We apply the momentum theorem to a control surface formed by
infinite plane I, far ahead of the cavity and plane Z, intersecting the
cavity along line AA. The momentum theorem takes the form

Wo [ @i +padsi— [ 100V, +0) +p)dZ, —nRAPx
. . (5.6)
i A

Application of the Bernoulli theorem yields an expression for pressure
p in plane 2, at y >R,

2 2
w; oy,
p=p—V,— 5 ——,

where the perturbed radial velocity is given by o} =v) +0vl. By virtue of
axial symmetry this velocity is identical at all planes passing through the
x axis.
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The continuity equation for the fluid region bounded by planes I,, £, and
the cavity is

"RV, = [ vds,

.‘:.—:xR%

Substitution of the expression for p and of the continuity equation into
(5.6) gives

= Bt

2 2
Wo=S(p =0 + { (3 —%) a4z =S80 + 1,00 — L. (5.7)
Sx

For a specified value of p,—p, = Ap formula (5.7) expresses the drag W, in
terms of the cross-sectional area of the cavity S, =xR} and of the distribu-
tion of perturbed velocities v, and v, within the fluid in plane Z,.

It is assumed in the derivation of (5.7) that planes I, and Z; of the control
surface extend to infinity. Actually, however, it is more correct to close
the control surface by segment Z, of the cylinder surface. Then the momen-

tum —¢ 55, (Vo + v,) 21R,dx should be added to the first part of (5.6), the flow

P

rate S';,%R,dx (where x, is the abscissa of plane X, and x is the abscissa

of plz;'ne %,) should be added to the right-hand side of the continuity equation.
If we consider a finite cavity, then its effect at infinity is equivalent to a

doublet, while the absolute velocity at distance r is of the order of ;13 If

we maintain the difference x—x, constant and allow R; to increase without
limit, then the integrals of segments of conirol surface I, will decrease

as —],- and can be neglected.
r

4, Corollaries of the momentum theorem

Obviously, drag W, of mouthpiece NN (Figure 54) does not depend on the
abscissa of control surface 2,. Hence if this plane is drawn through
the maximum cross section KK of the cavity, we derive the known formula

“QUZ
W, = eoSaq (I +0) = SiAp — S-z-dz, = S,Apk. (5.8)

Sa

The drag coefficient referred to the maximum cross section of the

° 2

cavity is ¢, =ok. In formula (5.8) £=1 —S.;Aps%dx' It is usually assumed
that & = £(0); however, the calculations using tl?is function are insufficiently
reliable. Theoretical estimates with the aid of sources and sinks show that
0.875 < k< 1.0. Reichardt obtained experimentally #= 1.0 for 6 <0.1.
Epshtein assumes that for low ¢, 2= 0.9. According to the present author,
k= 0.96—1.0. It should be noted that experimental determination of £ from
results of experiments beneath the free surface by the method of low-velocity
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cavitation involves certain difficulties. The so-called "surfacing" of a
cavity results in some increase in its diameter; a large-diameter cavity
in the vicinity of the free surface deforms the latter and produces optical
distortions which result in an apparent increase in diameter. Experiments

Ve
with immersions of %::: 15— 30 and Froude numbers Fr= Véi; =12-—19
showed that & is close to unity as ¢ - 0. Subsequently ¢ will be regarded
as close to unity (£=0.96—1.0).

Formula (5.8) yields an expression for the maximum cavity cross section
Sy =Sy ok = Yo (5.9)

which can be used to calculate the diameter of an axisymmetric cavity

]/cx (t+0
Dk=dll o_ko-'_-

The theoretical results and data obtained experimentally by this author
are compared in Figure 55. The experimental data were obtained for dif-
ferent depths of disk immersion: 7"1= 16— 30(1), 71H—= 15(2), and
—"1—1— = 3(3). Due to deformation of the free surface and optical distortions

the cavity diameter is overestimated for small o.
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FIGURE 55.

We considered only axisymmetric flow. However, the momentum
theorem can also be used for calculating the effect of an asymmetric flow
subjected to gravity or lift forces.

5, General equation for cavity expansion

It is impossible to obtain an exact equation for the profile of an axisym-
metric cavity. However, since cavities at low ¢ are highly elongated it
is possible to derive an approximation equation for their profile. Let us
follow the expansion of some cross section S, (t) of a cavity within stationary
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plane I, which, at the time in question, coincides with plane %, moving
s, ds

together with the body (see Figures 54and 56). Inthe %, plane —_% — _ V0=2nR%§ .

a - ox
The total derivative of surface S,, if its contour is related to particles §,
can be expressed in the form

98, 98, 9, By, BN
d ot x £ ox T ot V, °
aS, ds,
At low ¢ the values of —* and —* are close to one another. For a steady

cavity (see Figure 54) the absolute velocity at the boundary is v=V,+V,.

The radial velocity of the particle is Zy = ‘—ialti =V,sine, and the longitudinal

velocity v,=V,cosa— V,, where a is the angle of the tangent to the x axis.
The projections in the normal and tangential directions are respectively
v, =V,sina and v, =V, —V,cosa .

T
\ 5-5 * i/¢ X
k A, R R,
© X
// X l)/,:t H
ln=%7t~
Ly |
T

FIGURE 56.

If the velocity potential at the contour of cross-sectional area S, is @),
then the kinetic energy is
1 1 0,
ATy = — -5 0p (1) 2R (N v,ds = — + 0@ () o~ dx.
We shall show that equation (5.7), obtained by applying the momentum
theorem, can be represented as an energy equation for an isolated cross
section of the cavity. To evaluate the integral /,(x) in (5.7) it is possible

2
to replace .Q%. in the integrand involving the true radial velocity u,, by the

rate of "cylindrical" expansion u,_=—f--‘;i;, because in the plane of integra-
y

tion v, < v, for any y>R. This yields the inequality

Q ~ ™ Bt ~~ o~ aS
1,(x) = f_%znydy< e i" nyu,dy = —-%-Qq;-a—t!,
R R 4
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where allowance is made for the fact that the velocity potential at the
cavity boundary is ¢=— f‘;;dy .

Expression (5.7) of thg momentum theorem contains the integral /, (x),
1, (%)
AgS,
the value of ¢ at the maximum cross section of the cavity. It can be
shown that along any straight line, parallel to the x axis and at a distance
from it larger than R,, velocity v, attains its maximum in the plane of the
maximum cross section of the cavity. Hence we shall assume that in the
central part of the cavity k, =&, and since the value of 4 is close to unity
k. is also close to unity. Quantities ¢ and 4, serve as correction factors.

Expression (5.7) of the momentum theorem can now be expressed in the
form

which is taken into account by the expression &, =1 — which takes on

W as
2= ApSi(t) = BpS. () — 7 e (N~ O 0). (5.10)
R
Here, in addition to the above, it is assumed that & =1. "Correction"

function ® () has been introduced in order to replace the preceding inequality
for /,(x) by

as
0 =— 5O 500

It is clear that #® () < 1.0 along the entire cavity. As the cavitation
number is decreased for a fixed velocity of a flow with Ap — 0, the term

ApS, ~ 0 for all finite x. If it is further assumed that &) - ‘:E" then equation

(5.10) is transformed into equation (5.3). Hence one may conclude that
the ""correction' function should depend on the cavitation number ¢.

Since the expansion of section S, is considered in the stationary plane Z,,
then taking as the time origin (f=0) the instant when this plane is passed
by point (x,, R,) of the cavity we have V¢ +x, =x, where the origin of x is
set at the center of the disk (Figure 586).

Equation (5.10) has been derived for a steady axisymmetric cavity.
However, this equation can be interpreted as a general energy equation.

. U . (eT 195,
The sum of the potential (ApS, = 73}9) and kinetic (-(#’= -7 Q‘PWI’) energy per
unit length of cavity is equal to the work of forces overcoming the drag as
the body moves through the same unit length (%%’ =— 0). This yields the

approximate equation of the cavity
2 Uy +To +E) =0.
The velocity potential ¢ in the preceding equations can be calculated if
the potential at a given point of the cavity surface is known. Since the

cavity is symmetric relative to the maximum cross section, it can be
assumed that for points x = x, = L, (see Figure 56) ¢,= 0. For a steady cavity

Sp Sp
¢(x) = —S vds = —5 (Vi —Vocosayds = — V, (5, — §) + Volxy —x), (5.11)
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where x, and s, are respectively the abscissa and length of arc of the
maximum cross section, while x and s are the abscissa and length of arc
of cross section S§,.

Potential ¢ can also be calculated by considering the absolute motion
of points on contour s, on the basis of the Cauchy-Lagrange integral

op

==
Derivative

i) 1,
at v

o9
a“s(ax

or a stationary point in space is expressed in terms

of derivative

Btfw at the point moving together with the boundary by the

ion 0% % _ o0 df where 9 _®R
expression = 99 dy  where % 2%
p a < g ar = o1

stat tlmove ay

~

since the points of the

contour lie in the plane Z;. Hence %“;—= A—Q’l + kg—f— %u’. Integrating with

respect to time and assuming ¢ =0 when ¢ =¢, finally gives

‘%

w(t):—%(l—l—i)-%g(éii;—i?vﬂ\df (5.12)

For a steady cavity expressions (5.11) and (5.12) are identical.

6. Approximation equation of the cavity
profile and length

The simplest solution of equation (5.10) can be obtained by setting

Apt .
¢ = -—%(l - Tl} and taking the "correction' function equal to some constant,
* 2

—X—du

¢ =x. In fact dr?

e , where u= l—%. The constant of integration
—_ k

&
should be found from the condition that the cavity contour passes through
some specified point R=R, at t=0. As a result

2 2 2
R_“R_h_( ')7,

= 5.13
RI—R? ( )

The contour equation R (#) and the derivative R (t) is found from (5.13):

ey - (=gl

(5.14)
- RE( Rf) 1 t t ——m’;”’
-m(1- )5 (- )| (-7l
Here it is the absolute value (l — —:—) which is raised to the fractional
k.

power. Formulas (5.14) in this form make it possible to calculate the
cavity profile also when -:—> 1, but usually when -'t—>1.5 the boundaries
k A

of the cavity are indeterminate, since they start breaking up and foam
begins to form.

The second of formulas (5.14) canbe used to determine the half-length of the
cavity, more precisely, {, =V¢,. Forthis wematchatt=0the contour expressed
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{

by (5.14) with that of the leading part of the "empirical' cavity R =R, (1 + 3%)T

which, aswasnotedin Section 2, isuniversalnthe sense that atlow x it doeg not
dependon o. AsinSection3, by selecting x; = 2R,as our matching point we obtain
R,=1.92R,and RR' = RT’%. Using these conditions and employing (5.9) we have
(%)2= “xe (;0"“ 9 . and substitution into the second of formulas (5.14) at t=10
yields

R & _Rﬁcln(l-)ro) W

x
a

1,0 R cpl+a < Rfka ) 1

If the abscissa of the matching point is x = x;, then the cavity half-length
is L, =1, + x,, in which case

xo x 11
prolfp-Segat-enm e

1

Calculation of constants a and b requires selecting the "correction’ factor

» and matching point R, = R(x;) on the cavity contour at ¢ =0, or if % is a small
1 n
quantity, at the "empirical" contour R= Rn(l +3 %)T. In principle the match-

n dL
ing point should be selected so as to satisfy the condition E’i= 0, since the

cavity length cannot depend on the purely arbitrary point (x, R,). If we
select x, = 2R, and x=0.85, then the experimental data will be satisfactorily
expressed by (5.13), as is evident from Figure 57, taken from /4/. Under
these conditions one obtains to some degree of approximation the expression
Lo

R
‘n

= 1.92— 30, which is compared with experimental data in Figure 58.

L H :
- ® =g, From the From
R,‘_ R, 0.5 author's Epshtein’s
0.75 experiments experiments
A fr=10—-19 o Fr=57
X =100
[ & Fr=58
0.
" o - D R
°o— 6 = 0.067 »
a-d=o0cd [T ep L%,
025 -6=0029] . T~ b
M ——
0 1.0
1
FIGURE 517. FIGURE 58.
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Figure 53 shows the outlines of a cavity at 6 = 0.1, 6=0.05 and 6=0.01
calculated from formulas (5.14) at x= 0.85, x; =2. When the cavity is not
formed behind a disk but past some other symmetric body, such as a cone,
formulas (5.14) are also valid, but then g and b should be calculated for the
specific case, since L, will now be somewhat different.

The values of coefficients a and b in (5.15) can be calculated also from
other considerations, as well as by reduction of experimental data. Values
of a=1.53 and b = 0.42 were obtained in 1952 from the potential distribution
along boundaries of the cavity and disk /4/. On the basis of his experi-
ments at low relative velocities for a weightless fluid, Epshtein recom-

mends the formula
Lo ] / Cx,
R, = 1.67 -

All studies yield an estimate of the cavity half-length in the form

Lo
R,
different but close values (see Figure 58).

= a — bo; according to different sources, coefficients g and » have

7. Cavitation energy

Differentiating the sum of specific potential and kinetic energies U’ + 7°
along the cavity axis and adding to it the kinetic energy of the fluid along a
streamline-formed surface separating from the disk edges and equal to

21

’"*To we obtain the total energy

V2
E=\§(U’+T')dx+m*T°.

Ly

For a highly elongated cavity (o —0) E=~W,L,=~ kpS,L;, i.e., the work
expended by the external energy source in overcoming the drag W,is spent
on statically expandingthe cavity toa volume ¢, = gS,L, (pis the filling

factor, the work is expressed as U.—_S Udx = 8p0, ) and on imparting
V2 L,
kinetic energy T = S T'dx + m*— to the fluid. Using the standard notation,
L
we can express the kinetic energy in terms of the induced mass A, = % of
the entire cavity. o
Setting k=1, we find for half the cavity

1
}‘uchskLk(l—ﬁ)zQ"T — (5.16)

[+

The filling factor is = | nR%x; integration of (5.14) yields the
kR
Ly
value f=~0.7 as 6—-0 and x=0.85. The expression on the right-hand side
of (5.16) was obtained by substitution of S, and L, from (5.9) and (5.15).
The induced mass A,; and the kinetic energy of absolute motion of the fluid
about the cavity, expressed by this quantity, cannot be changed by instan-

taneously varying the motion of the disk. The cavity retains the "motion

The cavitation induced mass of the disk m* is equal to 2.52 QR,3I /4/.
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history'' of the body with its associated phenomenon of "heredity." Had a
solid body been constructed which coincided with the cavity boundary, then
the induced mass A, for such a body would have had the usual meaning;

the flow of the fluid and the kinetic energy T in this case would have been
determined uniquely by the motion of the body.

It can be concluded from formula (5.16) that the longitudinal induced
mass for elongated bodies coinciding with the boundaries of the disk and
cavity is gquite small: the volume of the induced mass, referred to the
volume of the body, is approximately A,/ 0, = 0.430.

8. The principle of "independent expansion'
of a cavity

The principle of ""independent expansion'' of a cavity consists in the
following: each cross section of the cavity expands relative to the path
of the body center almost independently of the subsequent or preceding
motion of the body, and is governed by a relationship which depends only
on the difference between the pressure at infinity and in the cavity, on
the velocity, and on the dimensions and the drag of the body at the time it
passes the plane of the cavity cross section under study. This postulate
is essentially approximate and cannot be proven rigorously, but is more
exact, the closer the body motion is to being rectilinear and uniform.

The preceding discussion is involved in the formulation of the independence
principle; derivationofthe law of expansion of an infinite cavity (Section 3) of
a finite cavity (Sections 5and 6) and, directly, the energyequation (5. 10) for a
given cavity cross section, which is just the formulation of the principle
of independent expansion. Suppose we wish to establish the law of expansion
of some cross section S, =8, (t— 1) of a cavity, the plane of which was
traversed by the body at time ¢,. At this time the body possessed dimension
R,, velocity V,, drag W,, pressure in the cavity Ap= const, and fluid density
¢. Applying formally the principle of independence, S,=aR*(,f) can be

calculated from (5.14), which yields R f) = Rif|—oi—. ‘t—’l], where
eryAp L3

. . . 2Apt
while ¢, is found from the expression QRka
n 1

W
Re=V 755
from (5.15).

This creates the impression that the principle of independence disregards
entirely the effect of neighboring cross sections §,.&,, ...,k of the cavity
on the motion of section ¢ under study. In fact, the motion of cross section
£ is affected, in addition to quantities R,, ¥, and W, corresponding to the time
of passing of cross section §, also by the motion of the adjoining layers.
In principle this effect can be expressed by some ''correlation function, "
which takes into account the effect of deviations in the radius of the body,
velocity and drag on R,, V, and W, during the preceding and subsequent times.
When using formulas (5.14) and (5.15) to calculate an unsteady cavity on the
basis of the independence principle we simply assume that the correlation
function for an unsteady cavity remains the same as it was for the steady
cavity. We shall now illustrate some applications of the principle of
independence.

= a—b%’-’z-, obtainable
evy
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1. Suppose a disk moves in a straight line with constant acceleration

%: w and that at time ¢, it has velocity V,. Had this velocity remained

constant, then over a period t=t,—1, the disk would have moved distance

x, = Vot from section S, under study; this can be determined, for example,
from (5.14). Since it moves with some acceleration, the disk will actually
travel a distance x,=V¢+ w—: = xl(l + —':;/'—‘2), when the law governing the

")
expansion of S, remains the same as for motion with constant velocity (V = V,).
Hence the cavity is more elongated during acceleration and more com-
pressed during retardation.

In actual calculations it is required to find for points x, x,. xs, ..., x, tra-
versed by the body the velocities V,,V,, Vs, ..., V; and times #),t,,4, ...t at
which these points are traversed. The expansion of the cross section at
path point x; can be obtained from (5.14) by substituting for ¢ the difference
t—t,> 0. The time of complete expansion fy can be found from the expression

A
ty = 2&};'(“‘ QV‘Q) (5.17)

The maximum cavity radius is obtained from

Wt
Ry = nkAp ’
and the radius of the cross section from

R‘(t—tz)=Ruf(£“— —"—")

’
Rn tkl ’

the form of the function, on the basis of the independence principle, remains
the same as for a steady cavity.

2. For a disk moving in a curved path but with constant speed, the
contour of a steady cavity is constructed with the path treated as the body
axis. The cavity for accelerated motion over a curved path is constructed
in Figure 59. Experimental checks of the independence principle under
different conditions have always yielded satisfactory results /4/.

)
(v N
L]
[~

=02 0 +02
X, X
===—_-—=—Accelerated

Decelerated motion

Steady motion

FIGURE 59.
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On impact acceleration or stopping of the disk the boundaries of the cavity
at the disk break up and are highly distorted; farther parts of the cavity
remain, for some time, the same as if the disk would have continued
moving /4/.

9. Cavity sealing and wake flow

The cavity at its central part is approximately symmetric relative to its
maximum cross section. Hence in the theoretical calculation of the cavity

contour the ratio é can range from zero atthe matching point (x,, R,) to
approximately 1.5; at high ;’— the cavity is usually very agitated, filled
k

with spray and foam, which is ejected from the region of wake formation.
However, the length of a '"smooth" cavity, free of spray and foam, is not
fully defined and depends to a large extent on the conditions of formation
and conditions of sealing of the cavity.

From the standpoint of the principle of independence the formation of a
cavity can be schematized as follows. A body upon passing through some
stationary plane generates an elementary cavity which expands by inertia,
overcoming the external excess pressure Ap = p, — p,. After some time ()
the kinetic energy supply is exhausted, the cavity attains its maximum
cross section, after which the cavity starts narrowing down due to pressure
Ap. This compression distorts the cross section and wake flow forms as a
result of collision of the opposing boundaries.

Experiments show that the trailing part of the cavity is essentially
unsteady; it periodically stretches and contracts, leaving behind eddy
clusters of various dimensions, containing bubbles of gases ejected from
the cavity. It is interesting to note that the theoretically postulated
reentrant-jet model does not represent the actual flow pattern within the
cavity, apparently due to the inherent instability of this type of flow.
However, if a high-speed motion picture is taken of the trailing part of
the cavity and then projected at the usual speed, one notices the periodic
appearance and disappearance of reentrant jets, which flow forward from
the cavity sealing region.

In a heavy fluid even the leading part of the cavity does not remain
symmetric; its cross sections are distorted and the cavity rises somewhat.
Under certain conditions hollow vortices form in the trailing part of a free
cavity which does not close at some solid body. The generation of these
vortices, which are not always visible, occurs also in flows past an
inclined disk or other body, i.e., at the onset of 1ift. The rate of gas
ejection from a cavity depends on the flow pattern which develops in its
trailing part.

10. Structural details of cavities in a heavy fluid
The structure of cavities in a heavy fluid, in a gravity field with gravita-

tional acceleration g, differs somewhat from that of the previously discussed
cavities in a weightless fluid. The most elementary considerations show
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that a cavity with volume O, should have a buoyancy lift of 4, = ¢g0,. How-
ever, a constant pressure p, acts within the cavity, and the projection of
resultant pressure forces at the boundaries of the cavity and disk along the
y axis is found to be zero. The Bernoulli equation, composed for stream-
lines extending along the top and the bottom boundaries of a cavity, yields

o5 oVt o3
Pyt~ =P, + —- + 08y, =P, + 5 + &y

Top #>0 Bottom #+<0

and hence the tangential velocity V, >V, and a velocity circulation I' = §vds 131a
takes place about the cavity. The lift of cavity layer dz is, according to
Zhukovskii's formula, ¢[Vdz; this force acts downward on the cavity and

is balanced by the buoyancy force gS*dz, where S*is the area of the

section cut in the cavity by plane x, y(Figure 60). From these considera-

tions ' = gvﬁ. A similar result is obtained from the Bernoulli equation.
0

Since qu;—V’-(Vl —V)+gly, —y)=0, dl =(V;—V)dx, introduction of the average
velocity V,, = —;-(V1 +V,) and integration over the entire length of the cavity

gives the expression

(5.18)

FIGURE 60.

The velocity circulation over any fluid contour encompassing each wake
vortex is clearly also I'. Actually it is quite immaterial what form is taken
by the wake of the cavity, whether hollow vortices or a mixture of gas and
liquid. The onset of velocity circulation I' arounda cavity inthe longitudinal
plane x, y also brings about the appearance of such a circulation along the
contour embracing completely the single-valued wake. The circulation
along a contour embracing the entire wake is zero.

Had two vortex filaments (of zero diameter) formed behind the wake,
then the distance between them br would have been obtained from Zhukovskii's

0
theorem, since 4, =¢l'b;V;, and from formula (5.18) b. = <. These vortex
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filaments would have absolute velocity v, = 2_._ far from the cavity, and the

sine of the angle made by the filament axes with the x axis would be

The above relationships were used by Cox and Clayden /27/ and sub—
sequently by Epshtein /7/ as a basis for the theory of loss of gas along
vortex filaments, It should, however, be remembered that in the case
of hollow filaments or a finite eddy region past the cavity the expressions
for br and ur are different.

The dimensionless criterion for the effect of fluid downstream from
weight on cavitation flow can be expressed by the ratio of the dragw,, which
virtually does not depend on weight, to the force 4,, which is entirely due
to fluid weight:

W, V,
T"z g;nc’=u’Fr’. (5.19)
The Froude number is based on the mouthpiece diameter d, (Fr = sz_d) and
n

does not at all describe the effect of fluid weight for developed
cavitating flows.

Another criterion for the effect of weight (which, however, is
related to the first criterion) could be the minimum cavitation number ¢
In order that a dynamic pressure minimum would not exist within the
fluid it is necessary that the dynamic pressure gradient at the cavity
boundaries should coincide with the normal directed into the fluid. To
satisfy this condition we required V,>~ V; at point y;m. Referring the static
pressure p, of the free flow to the center of the disk and expressing the

min*

. . Po— Py
cavitation number as g = T,we obtain
0

2

(U )

In the limiting case when V; =V, and 2y,,=D,, the minimum cavitation
number is

in = —%
Omin = Y7~ - (5.20)
Relationship (5.20) is equivalent to the condition p,—p, > ogR,; for gaseous
cavitation, no matter how large the volume of gas injected, the actual
cavitation number ¢ will always be larger than opn,. It is shown below

L
that the ratio -%2—" is also convenient for describing the effect of fluid

0

weight.

11, Rising of the cavity

A cavity moving in a heavy fluid deforms and its axis acquires
a curvature. Upward curving of the axis is equivalent to rising
of the cavity; in the first approximation this effect can be estimated quite
simply. Considering the transverse motion of unit length of a cavity
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with radius R and assuming that the transverse flow is equivalent to the flow
past a cylinder, we find the ""momentum" onR?*, of unit length of cavity,

which should be equal to the momentum of the buoyancy forces quSR’dt
Thus, the vertical rise rate is b= v, =— S Rdt, and the extent of the rise
of the cavity center relative to the center of the disk is & = S V. For a

Q0
steady cavity, since dx=V.t, we have

v dn g 1 SR’(x)dx-_— 80,

Vo dxr ~ yIRY @ ViR ) *

where 0 (x) is the cavity volume along the longitudinal-axis segment extend-
ing from O to x. It is possible to find some value x=yx from the considera-

tion that— ) = AR (xy), where %, > L,. Obviously, for all x< x, we have
h< & Vi and the rise is h < £X 2V

0
The cavity rise can be calculated more precisely from (5.14):

dx. (5.21)

In the coordinate system x, y with origin at the center of the maximum
R?
cavity cross section at x =1 and R-I? — 0 (for very small 6) the rise can be
14

calculated from the expression

h=% (_"L_)zﬁ{%m et e-n), (5.22)

where [ = —,’_’—, and integration in (5.21) is carried out from f = — V I— ?.
& x

Table 10 lists calculated values of the relative rise & = calculated

_h_
gLy’

V2
from formula (5.22) in a coordinate system with origin at the’disk center
(" = x,+L;).

TABLE 10,
X
I 0 0.5 1.0 1.5 1.9
X -
r(—Lh >=h 0 0.068 0.293 0.785 1.97

¢ ox \t—-f

TlT—) et 0 0.125 0.500 1.220 1.81

2\T,

Some remarks are called for on the physical nature of cavity rising.
First, the above calculation of rising assumes that each section
expands according to the same laws as in a weightless fluid. In fact,
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the mean pressure Ap decreases as the cavity continues to rise and the law
governing the expansion of the cross section will be somewhat different.
Secondly, the cavity cross section deforms during rising, and a neck forms
in the bottom part and breaks up into spray and foam in the sealing region.
As a result of these factors the above calculation of cavity rise should be
treated as an approximation, valid over approximately 2/3 of the total cavity
length. The results of computations are shown in Figure 61.
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FIGURE 61.

Note. Taking note of the imperfection of the above theory of rising as
applied to the trailing part of the cavity, Epshtein suggested that this
phenomenon be approached from the viewpoint of the linear theory of wings
with small aspect ratios. However, he failed to note that the linear theory
of such wings is based on the very same momentum theorem; hence
0 () = lpnR* (x} V, (»)]V,, which yields the previous formulas.

12, Cavity downwash in asymmetric flow

The lift W, produced at a mouthpiece asymmetric to the flow results in
downwash of the cavity. According to the momentum theorem, the lift
momentum W, t produces an equal and oppositely directed wake momentum
behind the body; for a cavity with circular cross section this momentum
is approximately VyfenR%V,. This yields the expression for the inclination
of the cavity axis

1%
Y=y == (5.23)
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For a steady cavity the expression for R(x is also obtainable from (5.14)
and the linear travel is obtained by integrating equation (5.23):

x

. W ¢ dx
h=5y(x)dx=— ¥ SW, (5.24)

ngV?, h

The formulas of this section are valid to the same degree as those of
Section 11 for cavity rise. These conclusions cannot be applied directly to
the rear of the cavity.

13. The general case of transverse motion of a cavity

The cavity motions examinedin Sections 11 and 12 are the most elementary
cases from a wide class of possible transverse deformations of a cavity.
Transverse deformations are associated with rising and the onset of 1ift,
as well as other perturbing factors. In order to show that this is so, we
shall express the momentum theorem for the same control surface as was
considered in Section 3 (see Figure 54), but shall now determine the force
acting on the body and cavity along the y axis. Since the integrals of motion
along control surfaces Z, and Z; do not yield force components along the y
axis, we derive the following expression for the momentum flux:

W, = eV, +0)0,dE — é.‘Q(V,, + ;) v,d3.
i,

We recall that V, is the flow velocity at an infinite distance upstream,
while v, and v, are perturbed velocities, which in this case refer to planes
Z, and Z,. :

When plane I, is moved upstream to infinity, if the flow at infinity
is a doublet, the integral of Vw, at this plane will be zero. Even
at the cavity boundaries v, € V,, and hence the integral of Vp, over plane
3, can be neglected compared with the integral of vu,.

The following should be noted as regards integral {v,dZ. InSection3 we

considered axisymmetric flows, and hence velocity v, was radial. In
the case at hand we consider a flow and cavity symmetric relative to the
x,y plane, and hence W, =0, while v, is simply the vertical component of
that part of the perturbed velocity which is due to asymmetry of the flow.

Consequently, the integral ¢\ vdZ = K, can be treated as the y component of
y g v Y

3,
the fluid momentum in a layer of unit thickness.
The transverse motion of a highly elongated cavity is now treated approxi-
mately by means of the principle of plane sections. As is known,

the momentum of a plane section is K, =—QS‘PC°59d5+Byea, where

the integral designated as B, is taken over the inner contour s of the
cavity, formedby a section of the Z, plane, while B, is a similar integral,
taken over an infinitely far contour embracing contour s (see Section 9 of
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Chapter Two). By selecting an external contour in the I, plane it is possible
to obtain the condition B, =0.
Thus, the momentum theorem yields the approximate expression

W,ng.,Scpcoseds=-—VoB,. (5.25)

L]

Condition (5.25) should be satisfied for any section of the cavity cut by a plane
parallel to the yz plane. Here, for a cavity with circular cross section

— Rd9, where 0 is the angle between the positive y direction and the normal
to the boundary at point s.

In flow past a disk at angle 8 force W, is directed upward (it is greater
than zero), while the perturbed motion of the cavity is directed downward.
When the cavity rises the hydrodynamic force is directed downward (opposing
the buoyancy force), while the perturbed motion of the cavity is upward.

In order to gain a clearer insight into the perturbed motion of the cavity
boundaries we shall consider this problem in more detail, assuming that
the almost plane potential fluid flow in the transverse plane is generated
as a result of small departures of the boundary from its initial circular
cross section.

Above we replaced integral /,(x) by kinetic energy T, = —7Qcp at 2> 1, (%)

within a flow tube. Now we denote the velocity potential at the cavity
boundary, corresponding to radial expansion, by ¢,. The perturbed motion
and deformation of the cavity contour generate almost plane potential flow,
for which the velocity potential, symmetric relative to the xy plane, can
be represented by the series ¢, = A,r"cosnb.

We thus express the velocity potential of perturbed flow as

=0 +9 +¢+.-+9,. The potential ¢ = Ar—'cosd at cavity surface r =R
generates the normal velocity v, = ! =—5cosd. If A4, =—R%¥, then potential

¢,corresponding to a simple doublet will satisfy the kinematic boundary
conditions for motion of the cavity without deformation of its circular
cross section, with center velocity V,. Integral (5.25) for ¢, is equal to
the momentum

2
B,=—¢ S @,d{RB)cos 0 = enR*V,
0

and is zero for all ¢,, with the exception of ¢,. Hence the momentum B, of
unit length of cavity is determined entirely by the motion of the cross section
with area 8§ = nR? as a nondeformed circle. This result shows that the
estimated rise and downwash of the cavity examined in Sections 11 and 12

is valid irrespective of the deformation of the cavity cross section.

Denoting the radial rates of deformation of the cylinder by {,¢,.., £, we
find that constants A4, 4,, ..., 4, satisfy the equation A, = —% R'"'E,, provided the
deformations §,.§;,....§, are zero.

The kinetic energy corresponding to each harmonic is given by

9§?.
Y
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For the first harmonic

We now consider in more detail the case when the cavity axis is subject
to downwash due to the onset of lift, Momentum B, = gnR?V, along the cavity
remains constant but, due to change in cavity radius R, the velocity

2

4 W
V, and kinetic energy of the fluid T, =B, o = o7 sz vary. The approxi-
0eT

mate energy equation for a cavity subject todownwashbylift has, by analogy with
equation (5.10), the form

’ Wz é‘l
W, ~naRAp 4+ Ty + —%__ A N (5.26)
Pt tot 2V2onR? +onR gn 0.
n=2
T, TotTot..

The average radius R satisfies the condition aR* = S, (¢}, where the cavity
cross section is not necessarily a circle. Forces W, and W, for flow past
aninclined disk are givenby the formulas of Section1; here the circular cross
section of the cavity is deformed. The sum of perturbing energies IT,is
not equal at the maximum cross section of the cavity ( here it is postulated
that T, =0). Hence formula (5.9), relating the drag of a disk placed per-
pendicularity to the flow to the maximum cross-sectional area of the cavity
AR} =S,, is now invalid.

We assume that when the cavity streamlines separate from the disk

(t =0) the entire lateral-motion energy E T,is given by the term T,(t = 0).

As the cavity cross section moves awaynﬁ'om the disk, the energy is re-
distributed, the value of T, decreases, while the values of higher-order
terms increase, but in such a manner that the sum 7,4 T, + ... remains
constant and equal to T, (f = 0) along the entire cavity.

Then, for any t>0,

o

P E__ v
_— 7R (t _—=— =T (t=0).
2V2onR? (1) R 2 5 2V3enR? i )

a2

The drag and lift coefficients for an inclined disk will be ¢ = ¢, (1 + 0) cos®
and ¢, = c,o (1 + 0)cosdsind, where co= 0.82. Treating the inclined disk as an
D2
airfoil, we note that its aspect ratio is A = S—" = % and the induced drag
& & »
coefficient is ¢, = { =<'. Substituting these relationships into equation

(5.26), on the assumption that &=1— R,;A has the value given in Section 4,
nRyAp

the maximum cavity cross-sectional area S, and the average cavity radius
R, are found. For T, =0 we obtain

(nl(/)
>

=g (e — v l)s
(5.27)

R a+ %

e e [ Er. T sintd]
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S(O)
Table 11 lists the ratios gf;m
L] h

the drag ratios W asa function of the disk inclination angle 6.
o

of the maximum cavity cross sections and

TABLE 11.
[ 0 5 10 15 20 30
s(g)
ga) 1 0.993 0.96 0.92 0.86 0.71
&k
Wy
WTO 1 1.0 0.97 0.93 0.88 0.75

If the respective diameters of the maximum cavity cross section in the
plane of angle § and in the perpendicular plane are 2R, and 2R,, then noting
that (by definition) R} = R,R, and also (from Tseitlin's experiments)

%zcosé in the leading part of the cavity, we have approximately
£ §

Rh
R,=—Vﬁs—, R1=Rh V cosd.
The contour ofthe cavity for § %0 can be constructed from the contour
at 8 =0, If the contour radiusfor point x for 8= 0 is R=R(x), then R y= Rcos$,

3 1
and R;=Rcos?d and R, = Rcos? 8. The construction is shown in Figure 62.
This method yields the maximum deformation. It is, however, possible
that the true deformation for small ¢ will be smaller.

FIGURE 62.

Since R inthe expressionfor 8, should equal R,, the actual downwash velocity
V, of the cavity axis relative to that calculated from formula (5.23) is as
cos§ to unity.

In the present section we presented only the most general relationships
governing the motion of a perturbed cavity. Actually, however, the
perturbed motion is much more complicated and has been insufficiently
studied.

126




14, Equation of motion for the perturbed
motion of a cavity

The study of the perturbed motion of a cavity can be extended somewhat
by using the hypothesis of constancy of pressure at the boundary. We shall
again consider the absolute motion of an almost cylindrical element of
cavity length with all the perturbed motions of 1st, 2nd, 3rd,...,nth order
treated as plane, while the overall expansion is assumed to be the same as
for an undisturbed axisymmetric cavity.

Assuming that the potentials ¢ of expansionvelocities and all the perturbation
potentials @, 9, ..., @, are specified in a moving coordinate system, the origin
of which moves with velocity V, = h along the y axis, the contour of the
perturbed cavity in polar coordinates r,8 can be represented in the form

r=R-4§,cos20+&,cos30 + ... +-E, cosnB =R + L.

Quantities &%, ....E, and velocities &, &, ..., can be regarded as being very
small compared with R and h.

Defining the static pressure p, for the initial (h = 0) center of the cavity
and treating pressure p, as constant, we obtain an expression for the
Cauchy-Lagrange integral:

o +5 (grad o) + — gk + Rcos®).
Derivative %—? should be calculated for stationary points in space
with which the boundary coincides at the given time, since potentials
= _ﬂu:o;"e are assumed to be specified in a moving coordinate system
traveling r\lzzri’ch velocity El =# along the y axis. Hence for the undistorted

circle, when § =0, we have for n» 2

At the cylinder surface r = R the radial velocity is v, _g cos 78 and the
transverse velocity is u, =&, sinnd; the other velocities are v, = hcos® and
= hsin®. Projecting these velocity components on the y axis gives

. .
h -—OHIZ.R =R4+v+v, +...4+v)v, —@ +u+...+u)u,.
In addition

LU, —uu, = hé,, [cos 8 cos nB — sin O sin nf} == izEn cos(n + 1)6.

These expressions yield

dp

h
9% |,—r

= Rhcos® 4+ EhE cos(n + 1)8.

n==1

In order to make allowance for deformation of the cylindrical surface,
it should be remembered that

dp dp L) _ 09 9 (dg
——-—B‘IR"»E =§ETI;+7(W)IR§— 0—1|R + ot (a,) g 3![ +R(§,CN26+§SC0536+ )
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The square of the velocity is given by
(grad ¢)* = (kl +u 40,4+ U+ @ e+ )

Collecting the terms and applying simple trigonometric formulas, we
find that

(gradgf' =R+ & +§ +

+§,,+2RZ§ cos nb + Z Z§ £, mCos 6.

=] M=}

Substituting all the above expressions into the Cauchy-Lagrange
integral and collecting terms with multiple angles, we have to within
first-order infinitesimals

3 1. . . —_
{—%+'§'(R2+h’+§§+...)+gh———p°Qp"}+
+{—%-—5-(R2h)+gR+if§,+...}cosG4—
+ |t RE) + Ry —h(h—b) + .. Jeos20 +

+[__n‘..%(Rgn)+'1é§”_ E_,—E.)+.. }cosne+...=0.

Each expression in braces should be equal to zero. Obviously, the first
term defines symmetric expansion of the cavity in the absence of dis-
turbances. If we disregard the small quantity A§, + ..., the first term
will exactly conform to results obtained in Sections 11 and 12. In a heavy

fluid & = SR'dt as was pointed out in Section 11. If the fluid is weightless
(g = 0), quantity R*% remains constant and
this case corresponds to skewing of the

¢,co5386 cavity due to lift (Section 12). In general, as

long as the perturbations are small, we

have linear superposition of perturbations

of various orders. The perturbation of

order k is in principle excited by per-

turbations due to products of & and per-

F g: turbations of orders n—1 and n+1.

§,c0528

Experiments show that the three-
dimensional cavity is sensitive to various
disturbances, which markedly deform

¢,c0528+4yc05368  jts cross sections, particularly in the
trailing part. The above analysis of
FIGURE 63. perturbed motion illustrates only the
main aspects of the method and is ap-
parently suitable for estimating the first
few harmonics. An example of the addition of two harmonics of equal
amplitudes is shown in Figure 63.
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15. Effect of the free surface and walls

The effect of the free surface, bottom and walls of the water tunnel on
the cavity dimensions is quite appreciable; however, in the majority of
cases it has not been determined exactly. Treating the cavity in its absolute
motion as an ensemble of stationary sources of variable strength, it can be
concluded that each cavity cross section is "attracted" to the free surface
during expansion and ''repelled" from it during compression, i.e., in the
trailing part. When moving near a solid surface this picture is reversed,
i.e., the cavity is attracted to the surface during compression. Obviously,
during horizontal motion in a shallow tank the trailing part of the cavity
may be strongly attracted to the body. The above conclusions are obtained
from elementary considerations, by taking the boundary condition at the

free surface as g_:v =0 and as g—:’ =0 at the wall; thisis equivalent to placing

above the free surface image sources of opposite sign and sources of the
same sign behind the wall.

The axisymmetric flow past a mouthpiece in a circular tunnel with cross
section S, can be treated by means of the momentum theorem in the same
manner as in Section 3. The expressions for the maximum cavity cross

S, S
section W, =S,(p,—p,) — 5 q;f, dS and V.S, = vadS are valid also in this case.
However, the continuitys'équation yields irslkequality VS <(Sp — SV, , since
between the cavity boundary and the tunnel wall the velocity decreases
from V, at the free boundary to some lower value at the tunnel wall.

. s, 1
Since V,=V,V'1 + ¢, we should have 5 <1 BEarTh

for example, to attain a cavitation number o = 0.1 in the tunnel, then it is

If it is desired,

necessary that —_‘g—" be greater than 20 and the cavity diameter should not
k&

exceed approximately 0.22 of the tunnel diameter. Even then it cannot be
claimed that the effect of the walls on the cavity dimensions and shape is
insignificant.

16. Different stages of developed cavitation and
the loss of gas from a cavity

Developed cavitation can be (although somewhat arbitrarily) subdivided
into three characteristic phases, depending on the predominance of a given
factor. The first phase is dominated by the fluid's weight, when a
developed cavity forms at the lower velocity limit. This phase can be
termed "'gravity'" cavitation. The third phase, close to vaporous cavitation
arises at very high velocities, when the effect of weight is unimportant.
This "velocity' cavitation is close to developed cavitation in a weightless
fluid. The second, transition phase, is midway between the first and third
phases.

A graphic insight into the three cavitation stages can be obtained from
Figure 64, where lines / —/ of the minimum cavitation number

gD, - h e 2(pg— py .
Omin = 72 and lines /li—//1 of vaporous cavitation ¢, = —a Obviously
0 o
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the value of ¢ obtained with any gas-injection ratio @ cannot lie outside these
limits. The three basic parameters, Froude number Fr= _V—, injection

V gd
= I 2(py— . .
ratio Q = '1730? and cavitation number o= Lﬂolﬂ'Lk)" are found to be insufficient

for descirbing the cavitating flow. The minimum cavitation number accord-
ing to (5.20) is related to the Froude number by the expression ¢, Fr*= const.
Consequently, the lower limit of cavitating flow depends on the linear
dimensions of the body, for example, on the disk diameter d4,. The upper
limit, i.e., vaporous cavitation, does not depend on d,, but on the
pressure difference P,—P, . The value of p , the water-vapor pressure
at 20°C, amounts to only 0.0174 dyne/cm? and is therefore insignificant at
pP,=~ 1 atm. Hence the vaporous cavitation number g, is an additional and
important parameter of cavitating flow.
! l
\ b—p, =2 dyne /em?

@
P .0

]

Phase I

i
j A1
6‘,"4&%
arn \Y
\ Phase II

X
| & ]
L~
eyt
0.05 | 0'<02 ,/// \\ i,
£ ﬁ% .
\ L 6an ) N
25 < e Q‘w}?
0 =10 T~ TSIyt “zs:s; [
25 5.0 75 ¥ m/sec
FIGURE 64,

As the difference p,—p, decreases the vaporous cavitation limit
approaches the limit of the minimum cavitation number. Since for given

1 : .
P.—pP, we have ¢, = 45, while for given d, we have o =~ there always

1
V4/3 ’
exists a point of intersection between the limits ¢, and o, . For example,
if p,—p, =0.1 dyne/cm? and d,=100 mm, this will occur for a velocity
of about 90 m/sec at 6=~0.002. Apparently the cavitation number cannot
be reduced further, since this point of intersection corresponds to the
attainment of pressure o atthe upper point of intersection correspondstothe
cavity. It wasassumedinthe above discussionthat the fluid cannot sustain
absolute pressures below p, and that the flow is horizontal.

The Reynolds number and, in general, the effects associated with the
viscosity of the fluid and gas have virtually no effect on the drag of bodies
such as a disk and on the formation of free boundaries of the cavity.
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However, the formation of gas-liquid mixtures inthe rear part of the cavity
and entrainment of gas there can be highly affected by the viscosity, i.e.,
the Reynolds number and capillary properties of the liquid.

Since the entrained gas is ejected into the cavity wake in the form of
small bubbles, it is natural to expect (due to the high specific heat of the
water) that the entrainment will not depend on the temperature of the gas
entering the cavity. It can be assumed that the loss of gas from the cavity
is affected markedly by the volumetric velocity (flow rate) @, referred to
the wake pressure p, and the absolute water temperature 9,. The kinetics
of these processes in the wake will be of importance for soluble or con-
densing gases. Since this problem has not been studied, we shall consider
below only the loss of insoluble and noncondensing gases.

Since highly elongated cavities are usually obtained at low ¢, it is natural
to assume that the removal of gas from the cavity is unaffected by the flow
pattern at the disk, but rather by the principal dimensions of the cavity.
Defining the cavity by its maximum diameter and eliminating the body dia-
meter d, and also assuming that the gas flow does not affect the shape of
the cavity boundaries, it is natural to seek the gas-loss law in the form

9 VoDk H
Q=VDkf(0mm,ov,o.—v—,Fh—). (5.28)

The effect of the Reynolds number Y%’-if and of the relative immersion
H/D, of the cavity beneath the free surface, as well as the capillary forces
remain virtually unexplored, and there is no complete theory of the loss
of gas from a cavity.

Gravity cavitation was studied quite extensively. The attempt to con-
struct a theory of gas loss by hollow vortices is due to Cox and Clayden /27/
and Epshtein /25/. Transition from the first form of gas loss by vortex
filaments to the second form of loss by periodically ejected portions was
noted by Krylov /8/, who put forward certain theoretical considerations
pertaining to the frequency of ejection of these portions.

Water-tunnel experiments for determining gas loss from cavities were

carried out by this author in 1948 — 1950 at g = 30 and velocities up to
: n

8 m/sec at Froude numbersupto 19 and disk diameters of 10— 20 mm.

In these experiments the disk was fastened to a cylindrical tube and no
free vortices were observed. Experiments showed that at some constant
flow rate Q the curve of o (Fr) follows the curve of 6u.(Fr) at low Fr, and
then deviates from it; o attains a minimum and then starts increasing.
This effect was also observed experimentally by Epshtein.

Gas loss by vortex filaments was studied experimentally by Epshtein,
Blyumin, and Starodubtsev /26/, as well as by Krylov(1958 —1961).
cavitation, when hollow vortices are produced downstream of the cavity
and the gas flows within the cavity do not markedly affect the configura-

tion of cavity boundaries and of the eddies, one may expect, for high dﬁ

[+
and =, an expression of the form
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Figure 65 is a plot (in coordinates ?"; and Q = V;Z 0= V%z ) of the experi-

£
mental points obtained from studies of gas loss by vortices /8,26/. The
curve was calculated from the expression

o _ 3 0.05 \1/3
7;"2(l+_2>) . (5.29)

The points are very scattered. This empirical formula reflects the
fact that increasing the injection ratio reduces the values of ¢ only to a

certain limit, close to —;— =1.5.
m

fr a,
é «— 57 200 Reduction of the injection ratio to
S, a o - 68 200 a \;a;lluz_below Q=0.02 fu;\:ally r::asults
N 6 -0 20 2 in the disappearance of the cavity.
200 1% ‘- ?0 ’3': 2] Developing the Cox-Clayden
rx X — 6‘3 ”‘8 theory, assuming that the vortex
- : tube which forms ''entrains' gas
75 10 N a-100 350 (8 ube whie &
o e + .
'Q“O from the cavity so that Q=2—=a?V,
\QL ! ’ ol
150 ‘\‘ 3 using the expression #,— g, —ogh = 5
. = 2na;
Anomaly for the pressure at the boundaries
125 3 of a hollow vortex, and finally sub-
0 025 050 3_d—" stituting the expression for ' from
Section 10, Epshtein determined the
FIGURE 5. gas flow rate from the expression
= 0.27
Q= olo® Fri—3)* (5 .30)
Formulas (5.29) and (5.30) have fully identical structures. Setting
o3Frt = 0.96, formula (5.29) yields
Q= S (5.31)

o [0°F0 — 3.9]

Formulas (5.30) and (5.31) are qualitative expressions of the relation-
ships governing gas losses by hollow vortices in the gravity cavitation
stage. However, there are usually substantial differences between the
calculated and observed values of §. The causes for these differences
should be sought in the inaccuracy of calculations as well as in the fact
that some factors were disregarded in the processing of the experimental

data (for example, ‘g_k, Re, etc.).
When the vortices form due to lift, I'= %cydvo. Substitution into the

expression P,—p,—ogh= Q%l;m asg V,— oo gives —V%zo.0250§. It is possible
that this loss occurs in addition to losses due to other causes.
For velocity cavitation near the curve of o, the weight effect is
unimportant provided o/o,, »>1. At 6=0, the gas flow rate is Q= 0;
the value of Q should increase with increasing o, /o even for V,S,= const.
The following relationship is to the first approximation:

9y

i ‘)- (5.32)

Q= koS (
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Estimates show that the ''gas injection constant' 2= 0,008—0.01.

It should be remembered that the relationships governing the loss
of gas from cavities are approximate and thus provide only estimates.
The rate of gas loss depends to such an extent on the specific features of
the flow pattern in the cavity sealing zone that it is impossible to suggest
a universal method for the theoretical determination of gas loss.

The above considerations and conclusions suffice only for gaining some
approximate understanding of flows with developed cavitation. At the same
time various methods for obtaining theoretical estimates of cavitation
effects have been worked out. The main attention was paid to providing
a logical correlation of theoretical estimates and experimental data;
however, this was not always found to be possible,

The method of gaseous cavitation allows experiments to be conducted
at a relatively low velocity and large cavities to be obtained. A large
amount of experimerntal data has been accumulated in this region of gravity
cavitation. However, these data should not be overestimated, since the
conditions of cavity formation vary markedly with increasing velocity and
the decreasing role of weight, Section 16 concerning gas loss from
a cavity is only in the nature of a general survey.
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Chapter Six

METHOD OF PLANE SECTIONS AND ITS APPLICATION
FOR CALCULATING HYDRODYNAMIC FORCES

The method of plane sections, by its nature, is some approximation of the
physical picture, the degree of approximation being the higher, the more the
body is elongated, However, this method is attractive by its simplicity and
generality, while in the majority of cases exact calculation of hydrodynamic
forces is so complicated that it cannot be implemented and most likely cannot
justify the corresponding volume of work.

In hydrodynamics the method of plane sections underlies the theory of
finite- span wings and of wings with low aspect ratio. This method is used for
calculating forces during planing of profiles and motion of ships. The
principal results of the theory of three-dimensional cavitation were also
obtained in conjunction with the method of plane sections. Other examples
of successful application of this method could also be cited. However,
restricting ourselves to the above we note that practical utilization of this
method involves a number of fine points, which should be considered in
deriving design equations. Although this is to the detriment of formal
generality, we shall consider the two-dimensional motion of slender bodies
of revolution within a fluid in continuous flow, partial cavitation and stream-
line separation, as well as the simplest cases of planing.

The idea of applying the method of plane sections to the calculation of the
lift for planing profiles is due to Pavlenko (1932). At this time the theory of
water entry [immersion] of profiles was still unknown, and the impact induced
mass was used for calculating forces and moments. Hence agreement with
experimental results was obtained only in some limiting cases (small 8,
partial width). This circumstance resulted in scepticism concerning the
method of plane sections as a whole, Later, in 1957 — 1958, Tikhonov,
Sokolov, Kolosov, and the present author also used the method of plane
sections for calculating lift during planing, but employed the Wagnerian
expression of lift for the uniform immersion of a wedge as the "cornerstone."
Agreement with experimental results was satisfactory only at small angles
of attack. At the same time work was carried out for refining the method of
plane sections, resulting in the displacement theory presented here.

Two approaches are presented in the literature to the application of the
method of plane sections. The first of these consists in calculating the
induced masses by plane sections, whereupon the inertial hydrodynamic
forces are calculated from the known rule /7/in the same manner as for an
ideal fluid, i.e., forces due to the properties of the real fluid are in some
way added to these forces. The second approach is based on the concept of
the "'pierced layer', when the pressure is determined on an elementary
"layer" through which the body passes; the total effect is obtained by integration.
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The theory of planing of profiles and of three-dimensional cavitation
which was lately developed /14/, as well as the known linear theory of small
aspect ratio wings are actually based on the concept of the pierced layer;
this makes it possible to construct a physical pattern of the motion of bodies
in a real fluid which is close to reality. Hence preference is given here to
the concept of the pierced layer. Approaches to a given problem from
different points of view are useful, since it makes it possible to determine
details in the mechanism of the phenomenon; this method is used here.

1. Basic conditions and principles

First, for simplicity we shall consider the two-dimensional motion of a
slender body of revolution in an infinite fluid. The coordinate system x, g, 2
associated with the body (Figure 66) is arranged so that the x axis coincides
with the axis of symmetry of the body, while the motion occurs in the xy
plane; unit vectors along the moving axes are denoted by i, j, k. The velocity
vector of the origin is therefore V =iV, ;H'V,, and the angular velocity vector is
@ = ko .

Tt;e more complicated cases (partial cavitation, planing, rebound, etc.)
will be considered from the same points of view. Calculations under other,
more complex conditions of motion can be carried out without much difficulty.

FIGURE 66.

It is known from the theory of motion of a body in an ideal incompressible
fluid that the hydrodynamic problem of finding the velocity potential ¢ can be
solved uniquely provided the velocity of all the points on the body surface S()
is specified and it is stated that the motion of the fluid is due only to the
body. Hence the fluid at infinite distance from the body is at rest (grad ¢ - 0
as r =V 2 ¥4 + > o). It follows from substitution and solution of the
problem that stopping the body results in instantaneously stopping the fluid
motion. The Laplace equation Ap = 0 governing the motion of the fluid shows
that the velocity of a fluid particle at point 7 = Ix + jy + kz is uniquely defined
by the boundary conditions at the body surface S (7), which for a given shape
of body are defined uniquely by velocity V of the coordinate origin and angular
velocity ®. Hence the fluid surrounding the body can be treated as a system
of material points related by ideal {internal energy equal to zero) holonomic
constraints to the body possessing six degrees of freedom (V,, V, V., 0.0, o ),

z

i.e., respectively six generalized coordinates in Lagrange equations of the
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second kind which, apparently, are applicable to this case /10/. However,
all this is valid rigorously only as long as the fluid is ideal and
incompressible.

A body moving in a real fluid leaves behind it a wake containing energy
and momentum, and then the entire motion of the fluid can no longer be
stopped by instantaneously stopping the body. Consequently the particle
constraints are not holonomic. Although the fluid in the vicinity of the body
outside the wake can still beireated aspotential, it remains unclear to what
extent the wake modifies the flow and to what degree the Lagrange equations
are applicable.

In discussing the method of plane sections one must state specifically
what this term means. We shall now imagine a plane section as a physical
layer, isolated from the fluid by two neighboring planes perpendicular to
the longitudinal axis of the body. Such a concept would not be very useful,
since the flow within this layer is two-dimensional and the widening of a
hole pierced by the body in this layer would require infinite energy. Hence
this layer will be thought of as a fluid annulus, embracing the body in a
transverse plane and bounded withinthe fluid by a stream surface supported by
the edges of the annulus. It is assumed that the inner surface of the fluid
annulus has a velocity potential ¢ and normal velocities induced by the body
motion.

If we consider, for example, the transverse motion of a body of revolution,
then the potential at the boundaries of the annulus, in the hole within the
layer, is assumed to be the same as that of a moving similar element of
length belonging, however, to a cylinder; the stream surfaces here are
close to the previously mentioned planes. As the body moves longitudinally,
the stream surfaces sliding off the ends of an annular element of the layer
will intersect the plane of the maximum section of the body, singling
out a volume formed by the rotation of two close streamlines relative to the
longitudinal axis of the body.

The representation of flow past bodies by sources and sinks and, for
transverse flows, also by doublets located on the axis of the body and in its
wake, is known /7/. It is easy to show that the potential of transverse flow
for a slender body is close to the potential of a cylinder. The kinetic energy
of transverse flow in a unit annulus, determined by the boundary values of ¢
and (;—a:, changes instantaneously with variation in the velocity of the
annulus center. It can hence be assumed that the relationships between
particles within the annulus are holonomic, and that the Lagrange equation
of the second kind is still applicable to it, while their application to a body
as a whole with its wake is doubtful. These considerations are valid if
there is no separation within the annulus; in the case of separation an energy
and momentum flux to the wake flow is produced within the annulus proper.

If the body is different from a body of revolution, then for the case of
flow past a part of the body with cavitation, planing and rebound all the
above remains valid, but in each specific case the flow must be divided into
two parts: one subject to holonomic constraints and the other determined by
the momentum and energy fluxes in the body wake.
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2. Approximate calculation of induced masses.
Motion in an ideal fluid

We recall the principal postulates of the theory of motion of a body in an
ideal fluid; the induced masses will be calculated by the method of plane
sections. As is known, the velocity potential of a flow generated by the
motion of a body in the xy plane within an unbounded fluid, at rest at infinity,
is ¢ =V,9, +V @ + 0,9;; the normal velocity is %‘} =V, fa?;l + V, i “’z%' The
kinetic energy of the fluid is

1 op Vi v?
T=—3¢ gj @S =Ay 5+ Ay +AVV, + AV 0, +
$ (6.1)

+ A%Vyu), + Agg —-

Using Green's theorem it can be shown that the induced masses are
determined from the expressions

o,
—M:=—QSS¢, "dS—-eSS% 548
(=126 k=126

If it were possible to find potential ¢, then one could calculate the induced
masses A, exactly, and hence compute the kinetic energy T and the hydro-
dynamic forces applied to the fluid by the body surface. However, the forces
thus calculated would correspond to the actual values only in the case
of an ideal fluid. These results would not be correct for a real fluid; in
additicn, it is difficult to actually determine the value of ¢ exactly even for
a slender body of revolution. All these reasons taken together make it
necessary to use approximate methods for calculating induced masses, and
then also of hydrodynamic forces with allowance for properties of the real
fluid. However, we shall start by applying the method of plane sections to
the calculation of induced masses for a slender body, treating the fluid as
ideal.

dq;. -~ e dR .
For a slender body = cos(n, x) = —sin (s, ¥) = v =R is assumed to be a

small quantity. Hence %—ﬁ‘zcose, where angle 6 is measured in the plane

a‘p‘ o~ -
parallel to the yz plane; -3 = xcos(n, y) — ycos(n, »)=xcos0. Induced mass i, for

slender bodies is quite small and usually comprises several per cent of the
mass of the fluid displaced by the body, for which reason it is assumed that
Ay =0. As a result one derives the following approximate expression for the

normal velocity at the surface of a slender body of revolution: %z(V,+

+ xw,)cos0 =v cosB, where v, =V, + x0, = iV, (x) (V,isthetransport [reference frame]
velocity of points on the x axis of symmetry of the body). It is assumed in
using the method of plane sections that the velocity potential at the surface

of a quasicylindrical element R = R(x) of the body is ¢=V ¢, +0,9,=(V + 0.0 ¢,,
where ¢,= — Rcos0, i.e., the potential is the same as for an infinite cylinder
of radius R, moving w1th velocity v, perpendicular to its axis; the specific

induced mass is —QS%COs 8d (R8) = onR? (x),
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The induced masses for a body with volume 0, and with end abscissas x,
and x, are

,, 09 -
G2 = Qpi-5,- =cos;

Mgy = —dix?—-R'cos’BdB = Q:SnR’dx;

. @ !
P =9y %=xcose,

(6.2)

Aoy = S xonRx;

X

Ps = XPj %%"— = x*cosf;

X2

Agg == ( x2onRx.

%

On the assumptions made A,;= 0 and 1,4 =0. It is clear that if we do not
consider the motion of a body of revolution, but of some other body, the
transverse members of which are symmetric relative to the xy plane and
the specific induced mass of the transverse member is e, (x), then (6.2) will
also be valid, but then gnR*(x) in them should be replaced by m] (x).

After the induced masses are calculated, the momenta and forces exerted
by the body on the fluid are calculated by the known method using Lagrange

equations of the second kind:di,-%:—-—

—g: =(Q. In fact, expressing the kinetic
¢
<

2 2
energy as T = A,”_sz. + AV @, + A — and assuming that g, = vV, and ¢, =0, wefind

w
2
the momentum
B =MV, + Ayg0)
and the angular momentum

IT=k eV, + Ag ).

As is known, the force vector F and the moment vector M exerted by the
body on the fluid are calculated from the expressions

Fdt

B JB =
— =—>~ + [0 XxB);
dt o (6.3)
M=£’——£’-+[¢3xl—] + [V xB]
¢t — ot .

Symbol a—ar here has the meaning of differentiation of vectors B and 7

without rotation of axes, i.e., assuming unit vectors i, j and k to be constant,
In our caseV =iV, +ij and @ = ko,. Elementary computations yield

T . dv d
Faif, +iF, = —i[AgV,0, + Ayl +][xn—‘ﬂl_ +hy %’11]; (6.4)

dav
M=kM, = k¥ V, + AV 0] + k[meL + ;_“%],
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If the solid slender body proper has distributed masses m’(x) along its

length, then, designating the mass of the body by m= jm’ (x)dx, the centri-
L

fugal moment of inertia by a, = Sxm’ (x)dx and the moment of inertia relative
L

to the 2 axis by ae= Sx’m’ (x)dx, the kinetic energy of the body proper is
L

2 2
x

4 «?
T1=m(—2+7”>+a2svyml+a66—2’-_

When the origin is placed at the center of gravity of the body, a,= 0. The
Lagrange equations yield expressions for the momentum and angular
momentum applied to the body:

B,=imV, + ilmV, + aw);

) (6.5)

I =XklaV, + ago).

The equations of motion of a body in an ideal fluid due to an external
force E . and moment M, are

%(B"'B‘):I;xt; %(7+]|)=Mext' (6'6)

If the fluid is ideal, incompressible and continuous, and the body is solid,
the entire inexactness of this theory consists only in the inaccuracy of
calculating induced masses by the method of plane sections. For a slender
body this can usually be tolerated. In order for equations (6.6) to be valid,
Fext and Moy must be external relative to the body-fluid system.

In all cases of practical importance pertaining to the motion of a body in
a real fluid, the conditions underlying the preceding conclusions are (as
previously pointed out) not satisfied, and hence these conclusions are for the
most part invalid. In a real fluid, as a result of its viscosity and the
resulting boundary layer, as well as in cases of discontinuities (when such
occur), the body leaves behind it a wake, containing a certain momentum
and energy, which can no longer be changed by instantaneously changing the
body velocity. The presence of boundary layer separation and of a wake
make it impossible to satisfy conditions under which Lagrange equations of
the second kind can be applied to an ideal and incompressible fluid. Hence
actually, hydrodynamic forces should not be calculated in the manner
indicated above; their values may differ from those given by equations (6.4).
It may appear that, in order to make allowance for properties inherent only
to real fluids, it is sufficient to supplement equations (6.6) by viscosity
force terms, leaving unchanged all the forces corresponding to the inertia
effect of an ideal fluid. However, this is not the case. Below we shall
consider the principal aspects of the problem of the motion of a body in a
real fluid.
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3. The concept of the pierced layer

It would appear at first sight that one can avoid using the above Lagrange
equations for calculating forces by first calculating the forces acting at the
boundary of the hole in the fluid layer pierced by the body and thenintegrating
to find the total forces. We shall consider this problem in more detail and
again in reference to a slender body of revolution still treating the fluid as
ideal.

The pressure distribution at the surface of a cylinder moving with velocity

= y,(f) is obtained from the Cauchy-Lagrange equation

0 , o0 P _
Frilan s +3‘——F(t)-

The velocity potential at the surface of a quasicylindrical hole in the
layer pierced by the body can be represented as the sum of two potentials:

¢=®, +®P,. The boundary conditions at the surface of a slender body are

9 % _ g4 2 and X _ 9 _ 3, h th tential ®
= & R+6r'='k n r=h =3 We thus assume that potential &,

corresponds to expansion of hole R = R(#), while potential ¢, is determined
by the motion of the hole in the plane of the annulus formed by penetratingthe
U”R’ cos 0

layer. Accordingto Section 2, it is assumed that ¢, =~ — » where r is the

distance from the x axis. Derivative g—:" in the Cauchy-Lagrange equation is

taken as a stationary point in the space, while the potential is specified in
the moving coordinate system. Hence

S __ [ cos® d " p
Ot |5tat {a‘ +[_ —al R)JJ %35y

where

o] d a N
£ -;#Pcose — a—?sine = Rcos 0 + v, (cos* 8 — sin®0),_p.

The square of the absolute velocity at the cylinder surface in the Cauchy-
Lagrange equation is

=R+ v, cos 0)? (v, sin 0y = R+ v? + 2v,1écose.
The time function F () is determined from the same considerations, i.e.,
the disturbed motion of the fluid at infinity from the body disappears, i.e.,

g‘f and ov*tend to zero as r=V 1+ 42 +22 + . Hence, as r +oo, p—+p;

consequently F(f) =2. Substitution of these results into the Cauchy- Lagrange
equation yields

'p:—p“ C%:— 7:-; R')+15(1—4sln'0) [a¢‘+ R’
According to the postulates of Section 2, ®, =V,¢, and ‘%‘ z% =~RV,=R.

o0, ox D,

Evidently when V,= const, o—g‘— *a=—V3
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In considering the stationary layer pierced by the body we neglect the

absolute velocity ‘3;:‘ of travel of the layer proper, while in Section 2 we

neglected the longitutinal induced mass 1,,. Both these assumptions are
equivalent and standard in the theory of slender bodies. In addition, the
pressure defined by the expression in braces does not depend on angle # and
does not have a component along the y axis. Hence in calculating forces
acting on a slender body of revolution we shall take into account only that
part of the pressure which is due to motion along the y axis. Thus, the
pressure difference which generates the lateral forces can be expressed as

2
p—po=GL(1—4sin 6) + LT S (RY,). (6.7)

We shall be concerned with two excess pressure integrals. The first
defines the pressure force of the cylinder on the fluid:

25

dF, = dx lS(p — p,)cos 84 (RO) = :7 (enR%,) dx,

and the second the "circular pressure' on the fluid:

2n

2
dQ=ax§(p—po)d(R0)=—2:tRQ—;5dx.

For a slender bod R R’ is a small quantity; hence dF, = —R'dQ =
Y & q

2
2nRQ—;”dR4 Obviously, dM, = xdF,. When the body pierces the stationary layer

_____ , where Z = —v,. Therefore

aF, = [ @R BV, + xo)1- Vo) + oxR (G2 + x 22— V,0,)} a.

In integrating dF, and dM, along the longitudinal axis of the body we will
encounter integrals of the form

fo2nr Rax = o [nRYE = W%

X,

x Xy
{ oanR 22 adx = o nR7E: — [ enk¥dx = — i (6.8)
Y 1

Xy L]
SQQnR dR pdx = o PRR7— f enRR2xdx = — Doy
x X

Integrating the elementary forces and moments along the body axis from
x = x; to x = x,, we find the projections of forces on the body axes x and y,
as well as the projections of the moment vector on the z axis.

Equations (6.8) yield the following expressions for the forces and the
moment:
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v? o}

Fep = 1QRYE o + ([0nRAL — Aol Vyo, + {[07R** — 2} 5
x . dVy du):

Fpo=— [0nRHEV.Y , — [nRMIEV.0, + gy —f + Aas 57+ (6.9)

Mo = —(@aRUIEVV, + Ve (el + hw,) — (RILV 0, +

dv d(‘)z
+ Ay g+ hes

For a slender body with sharp ends, when there is no separation of fluid
from the body surface and derivative R’ is very small along the entire body,
all the expressions in brackets in (6.8) and (6.9) vanish, since R(x)= R(xy) =0.
Here A" =0, Ay=A,, Az = Ax, and formulas (6.9) reduce to (6.4). We note that
the result as such is quite natural, since instead of calculating the pressure
one can use the expression for the kinetic energy for the pierced layer,

2
T = QnR’% , and then calculate from the Lagrange equation the quantity

a oT . ar .
Ed—uy::Fl/ anda—R- =—Q

It is clear that the result is the same irrespective of the sequence of
operations.

Hence, both the method of initial computation of induced masses (Section 2)
and the method using the concept of the pierced layer (Section 3) for an ideal
fluid and continuous flow past bodies yield the same final results.

4. Flow with streamline separation

Suppose a slender body has a pointed nose, sothat R (x3)= 0, andistruncated
by aperpendicular plane at x = x,, where R(x;) = R,. When such a body movesin
a real fluid, flow past the sharp corner at R, is replaced by separation of
free streamlines which, together with the fluid left behind by the body, form
a wake; in some cases a cavity may form behind the body. In such a flow the
terms in brackets in formulas (6.9) will no longer vanish but be equal to
their value at x,. Denoting by & = enR} the specific induced mass at x = x, in
the plane of streamline separation, and the projection of the transport
velocity of point x, on the y axis, as above, by v, = V, + x8,, collection of
terms expressing forces in expressions (6.9) gives

;Uz~
F;g=_xl%+FZ;
. 6.10
Fa=MVo,+ F, ( )

M, = Ax Vo, + M,

Expressions for F,, F, and M, in (6.10) are determined from (6.4) in the
same manner as for an ideal fluid and continuous flow past the body. Velocity
V,+ e, =u, is the velocity of the separation point x, in the y direction, for
which reason i, = B, is the specific momentum in the plane of separation
while VB! is the momentum flux shed from the rear end of the body.
Equations (6.10) show that force F,, and moment M,, of the body pressure on
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the fluid are composed of time derivatives of the momentum and the angular
momentum associated with the body and calculated in the same manner asfor
the flow of an ideal fluid past the body from formula (6.4) and from fluxes

of momenta and angular momenta shed from the body.

Y
2
-1 ’i— w2o?
4 2 A, z_
¥ A v
r A vy

FIGURE 67.

2
On converting to a moving coordinate system, the suction force—h;v—;-‘=
=-A{V“‘“—;, together with the projection of force — MV, in the direction of the
2
velocity, yields the induced drag A;V%’—Ai%, equal to the specific energy of

the transverse motion of the wake (Figure 67).

Example. Letacircular conewith small centralangle 2¢ move in such
a manner that V, = —aV,, where a<u. Let velocities ¥V, and V be constant
and let the angu{ar velocity be zero. The induced masses relative to the
origin placed at the center of cone base R, are
LR e R ng R
n=7 fgu’ M= T2 'ign M= GFn

the separation induced mass is A; = ngR}.

The forces and moments exerted by the fluid on the cone are:
induced drag

— Fog = nR? Y?" ;
lift
— F = onRW;
moment

a5,
-‘Mz2-3 EVG.
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As known, the induced mass of a plate of width 2R, is also ¢nR}. Hence
the preceding expressions apply equally to a delta wing and express the
known linear theory of small-aspect-ratio wings.

5. Further refinements of the theory

The introduction of the separation induced mass 4, explains to a large
degree the appearance of hydrodynamic forces when a body moves in a real
fluid. The pierced-layer concept thus makes it possible to estimate the
hydrodynamic forces produced by the presence of viscosity forces in real
fluids. However, in Section 3 we presented only the simplest scheme of
force computation on the assumption that the layer is stationary at each
given time and does not deform relative to the fluid at rest, and that
viscosity does not induce fluid separation within the pierced layer proper.

Actually, however, when using the concepts of the pierced layer theory
consideration must be given to the longitudinal transport of the layer which,

for a slender body, occurs with absolute velocity %%’: u, where the local

transport velocity is « = u(x,8). The average value of the velocity ua, =

2n
= %‘5 udéan be treated as the rate of transport of the layer center along the x
axis, When this transport is considered the relative velocity of the layer is

Viel = & V. + u,,-Obviously, the appearance of the transport velocity

d
modifies the magnitude of forces calculated in Section 3.

Let us now calculate the transport velocity for a slender body of
revolution in continuous flow. The velocity potential at the body surface was

expressed in Section 2 as ¢ = —(V, + w,x)Rcosd + ®,. The absolute longitudinal
velocity of the fluid is g—f =—R (V, + ©,x) cos8 — @,Rcos 6 + % . Obviously,

for any values of V, and e, for a slender body of revolution u.v= 0, since
2n

SICOS 846= 0, and the transport velocity 0—;—‘ is usually insignificant. It can be

(‘:)oncluded from this that the mean transport of layers for the forward part of
a thin, sharp-nosed body of revolution, where there is no lateral separation
of fluid from the body surface, is zero. For the case of planing and fully
cavitated flow past bodies the transport of layers at the lateral surface can
be quite appreciable,

It is known that if a body starts moving from rest, then the boundary
layer and the drag associated with its formation do not arise all at one time,
but gradually. Following the fluid particles belonging to the layer pierced
by the sharp-nosed body of revolution it is seen that the particles adjoining
the body are moved aside by it and the center of the fuild annulus is
transported with velocity V,+ xo, = vu,,

{

If the amount of center drift Sv,dt during passage along the body is very

high compared with the body radoius R, then an ordinary wake will develop
behind the body and one may expect the appearance of lateral drag w,, close
to the drag of a cylinder placed in a flow with velocity v,. If, however, the
body moves with velocity v, small compared with V,, particularly if the
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transport distance is smaller than the body radius, which is defined by the
inequality ﬁ“/—_—’-‘)— < R(x), then there will be almost no separation to the rear
of circle R(x) and drag w,can be neglected. In general the lateral drag will
differ from zero and be proportional to ouv? for each element, but the drag
coefficient C. will be a complex function of the transport of the center,
expansion of the radius, and the Reynolds number; this function is unknown.
Coefficient C, ranges (depending on the case) from zero to a maximum and
then decreases to some steady value. The lateral drag and its moment for
the entire body are

o v2 ,
@, = SCC2R %"dx = Cp o + CosV 0, +C66%'Z

Xy

m = CORY rdr e Cu bt CaalV x
2 = c 5 = 262—+ GGJD,-!-CGGT.

%

These forces and moment can be added to expressions (6,10} of hydrodynamic
forces.

The separation induced mass A and its corresponding separation
momentum B need not necessarily be regarded as the effect of free stream-
lines separating from a body with a butt of radius R,. For any body at v, =0,
even in the case of quite smooth sharp outlines, viscosity causesthe shedding
of a vortex system from the body surface (Figure 68). The vortices start at
different points on the body surface, but behind the body they form a vortex

pair with momentum B, and kinetic energy B”‘i‘é—‘ per unit length. The separa-

tion induced mass A/ can be treated as the equivalent of such a vortex system.

oS
/
O
//")

FIGURE 68.

*
For clarity of the analogy between forces MYV, and A -g and forces

acting on a wing, Figure 67 shows transition to the moving axes X, Y. For
\Z
small angles of attack a= - ate = 0, in the xy plane, the forces exerted

by the fluid on the body are
Fi=—NVand F. =A%
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the projections of these forces on the moving axes are

Y =AVa + ..
X, _xvzat_wz— =n2T.

Force X,is none other than the induced drag.
With consideration of the above, as well as of the fact that, in addition to
the above forces, there acts along the x axis a force overcoming the drag

w, = CxSu %2, which is due to friction and incomplete recovery of pressure,
the system of forces acting on the fluid takes the form

. . 02
Fi=—M £ +F +og

Fi=MV,0, +F, +w,; (6.11)
M,= hxVo, +M,+m,.

In these formulas force F,, whose magnitude is equal to the drag for
slender bodies of revolution, depends very little on the transverse flow,
determined by velocities V, and o,. The drag coefficient is usually
determined from wind-tunnel tests or is calculated with consideration of
friction and pressure induced drag.

The expressions needed to construct equations of motion of the body are
the last two of system (6.11). Ignoring nonlinear terms and making use of
the fact that v, =V + xo

F =xz? dt N A

M, =1, ——1+(x”+k x)V,V,+AG° dt + Ay + 2 DV,

o dt + A Vo,

(6.12)

Force F, and moment M; are exerted by the body on the fluid. Usually
steady hydrodynamic forces exerted by the fluid on the body are expressed
in terms of coefficients ¢, and m, by the formulas

- ov: = ov?
Y —c”SM 5= M, =m,S.L 7
where S, and L are respectively the characteristic area and length of the
body. In the linear approximation

¢, = c‘; o4 L‘;"-m;—
m,=mia+mja.
The dimensionless angular velocity is w = iv“ﬁ
The position coefficients & and m{ are determined by wind-tunnel testing
of rectilinear models. Quantities ¢f and m¢ can be determined experimentally
by wind-tunnel testing of curvilinear models, the method of oscillations, and
rate-table tests.
Equating the steady-state force components from (6.12) to their

expressions in terms of coefficients ¢, and m,, and noting that for small

angles of attack aw= — V“, we obtain
x

y




@S, % (x)y=—=ES,LL,
gy 4+ O x,)al—m“S LE: Py+Oym)=—miS, L2 L. (6.13)

Formally (according to the preceding conclusions) the values of the
separation induced mass A and of the separation abscissa x should be the
same in all the terms of (6.12). However, comparison with wind-tunnel
results shows that the values of A’ and x, obtained from different formulas of
system (6.13) vary, for which reason the products of A and x, in these
expressions are subscripted.

As an illustration consider a slender body of revolution of length L,
consisting of a cylinder with cross section S, and ellipsoids of revolution in
the forward part with major semiaxis L/2. The induced masses are easily
calculable relative to the center L/2 =x

Ao= 5 0SuLi M= — 75 @Sul% A = oSw.
Formulas (6.13) define the theoretical values of the coefficients:

| 2
C‘;"?.O. mf:- 3

Gm10 mi= -3

Experiments show that the actual values of these coefficients differ
somewhat from the above; however, they are close to theoretical values.

It was found by measuring the pressure distributions that at low angles
of attack the hypothesis of a pierced layer holds quite satisfactorily at the
leading, widening part of a slender body of revolution. Integration of
pressure over the contour of the cross section at the cylindrical part of the
body does not yield a stable value of the specific pressure force. This
may be attributed to separation of flow at the "leeward" side of the cylinder.

6. Forces on a partly wetted body

At sufficiently high velocities, part of the slender body may be wrapped
ina cavity (Figure 69). Theleading part of the cavity hasno clear boundaries,
due to the pulsating, unsteady nature of the flow. It is hence impossible to
single out precisely the points at which the flow is no longer separated and,
in addition, the flow pattern past the body used in calculations is also some
approximation of the actual situation. However, an approximate expression
for forces can still be found using the pierced-layer analogy.

The projection of forces on the traveling x axis now has a value differing
fromthat givenby expressions(6.9). Duetothe break inmedium continuity, the
"circular pressure' Q is zero. The projection on the x axis of friction
forces on the rear part of the body and of the pressure forces on the
wetted leading part will be denoted by w,, keeping in mind that this
quantity is determined from relationships of cavitating flow.
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The force F, and moment M, can be calculated from (6.8) and (6.9) on the
assumption that the average wetted-boundary abscissa is x, and the separation-
boundary abscissa is x,. Here two remarks are in order. First, when
integrating dF, and dM,= xdF, alongthe x axisthe specificinduced mass enR?® will
be referred to the wetted part of the body. If it 1s the cylindrical part of the
body which is wetted, then Ay = onR?(x,— x,); Ay = - gnR’(x?- x?), and Ag=

=—:; onR? (x3— x3). Second, it may appear at first sight that the expressions in

brackets in (6.9) are simply equal to the difference of the upper and lower
values of the quantity in the brackets. For example, if R, = R,, then [onR?? =0,
However, this is not so. The point is that, according to the principle of
independent expansion of a cavity, the center of the cavity-pierced layer is
stationary relative to the quiescent fluid. This layer therefore acquires a
velocity V, + xgm, only upon collision with the body, which imparts to it
momentum A, (V, +x0), while the momentum flux A;(V” +xm)V, is equal to
the pressure force on the fluid due to the setting into motion of layers at

x =1x,. As a result of the change in momentum as the layer moves from x,
to x,, there will appear (as in Section 3) a force which is determined from
the expression in brackets in (6.9), but with consideration of the upper and
lower limits. The force and moment are thus

F, =—[QnR’(V + )V, +onR“(V + "z"’z)V +
+hy s = +x,,——=xVu +7~22 e d,t (6.14)
M, = —enR%(V, +xm)1==V +onR’x (W +xo)V, +

+ (A, + Ay )V, +km i +)...s° Z=A Vo, + R,V +

do,
+xg|‘1),)vx+xu Tv"' ku _dli

dt

These expressions are fully analogous to formulas (6.10), the only
exception being that now the induced masses Ay, Ay and A, have different
numerical values. It is interesting that the cavitation force and moment are
precisely the same as for continuous flow past the entire body.

Above we assumed a value of the specific induced mass ¢nR?, corres-
ponding to transverse continuous motion of the pierced layer along the body.
For partially cavitated flow cases are possible of separation of the fluid
from the body in the low-pressure region, and this will result in a reduction
in the induced masses.
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7. Planing. Principal considerations

When dealing with a profile planing on the free surface of a fluid
(Figure 70) one may in principle make the same assumptions which were
postulated in considering the motion of a body submerged in a fluid. However,
differences between these cases do exist. First, the threekinematic quantities
Vs, V, and e, describing the motion must now be supplemented by two more:
depth of immersion of some point of the body (for example, of the planing
element #,), and the angle ¢, made by the x axis with the horizontal, equal
to the angle of attack «. Second, it should be remembered when using the
pierced-layer concept that the force exerted by the profile on the fluid
during submergence is not the total time derivative of the fluid momentum /2/.
If the induced mass in the direction of velocity of immersion k of some
profile is m*, then the momentum of the fluid is m*h, but the force is not

7:—' (m*h) (see Chapter IV).

Consider the planing of a plane, fin-shaped plate with deadrise angle 8,
in the x y plane of symmetry. The x axis is directed along the planing
element, while the origin is placed at the trailing point of the planing
element. The immersion of the planing step and the rate of immersion are
denoted by 4, and hy= —V, the angle of attack is « (Figure 71).
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FIGURE 71,

The pressure force of a planing plate on a fluid is

dP,‘=n(—2“¢—1)’{ghh’+(l—-%cmﬁ)qh*h'}dx--- (6.15)
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The simplified method of plane sectionsas applied to this case would have
consisted in calculating the force F,=— j dP,, where h=V,=— (V,+ xo;).

i
However, in the case of planing the longftudinal travel of fluid layers is
substantial and the method of plane sections yields incorrect results.

We recall the principles of the theory of immersion (see Chapter v).
When a profile is immersed symmetrically through a free fluid surface the
latter curves upward and terminates in a sray sheet which carries with it
energy and momentum flux. The energy and momentum thus carried away
are nonholonomic in the sense that changing the velocity of the profile cannot
change the velocity of particles in the sray sheet and, consequently, also the
energy and momentum carried by the sray sheet cannot be changed in this
manner.

Another part of the energy and momentum is imparted by the moving
profile to the main flow, the flow pattern within which is close to that
induced by impact of a profile, albeit in the case of a free surface distorted
by a previous immersion. This part of the flow can be treated as holonomic,
the energy and momentum of this region can change instantaneously with a
change in the velocity of the profile and is determined by means of an induced
mass basically in the same manner as for a body fully submerged in an ideal
fluid.

If the rate of profile submersion is h, while the impact induced mass is

*

m* then the pressure force of the profile on the fluid is (see (4.42))

.. dM . d - . dmll
P=m*h+—rh == (mH)—fEI A —. (6.16)
The impact and apparent induced masses m* and M are related by the

2(1 + &)
2k 41

Usc

dM, where k= —
2hsinB

integral expression m* = S , Uy beingthetangential
0
velocity in the spray sheet and B the angle made by the spray sheet with the

!+ &
2% + 1

mass m* and the apparent induced mass per unit length of the wedge are
expressed by the approximate formulas

horizontal. For a symmetric wedge =1 -12— cosfp, The impact induced

m*= & X oh? (—“B— — 1) (2 — cos B);
M= Gt (1) 10 =gt

Using these expressions we can derive expression (6.15) from (6.186).

The flow in each plane parallel to the yz plane during planing is
approximately the same as on immersion. Hence planing can be treated as
an ensemble of immersions of length elements dx of the planing profile.
Since the two-dimensional theory of immersion of a profile pertains in
essence to a fluid layer, in the theory of planing based on the theory of
immersion one must follow the migration of a thin pierced layer, which
travels ahead of the planing surface. We emphasize again that the concept
of the ''pierced layer' is conditional in the sense that reference is not
actually had to a physical layer, but to a mechanically equivalent effect.
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The transport velocities at points z are different and fluid particles which
form strip dxlying along the z axis form (at a subsequent time instant) a
curved strip. Hence we shall not refer to the local, but rather to the average
velocity of layer travel.

Spray sheet

Spray root
FIGURE 72.

We now calculate the velocity of longitudinal transport. The velocity
potential ¢ at the center of the wetted surface of a wedge (Figure 72) or of
some other submerging profile is negative; near the spray root at z = ¢, the
potential is zero. At the lateral faces of the wedge, at the inner and outer
surfaces of the spray sheet, the potential is positive. The impact induced
mass is approximately given by

. +
m*h = —g¢ S ©dz
=

when f 0., —>1. Since g(t,) =0, for small §

“+¢
[4 d
a5 mh) = —o 5 S 9dz = — o2u,..

—0

At some point x of the planing element the normal velocity is V = —(V 4-xw,),
while the rate of submersion of the fluid pierced layer (when its abscissa is x)
is A, At time t+df point x will move through segment V,dt, while the layer
will move through segment jVadt +iu,.dt, which yields A=V, —u.tge. Using the
expression for u,, the effective immersion rate is found to be

h= Y

1 tga 0 (m‘iz;
—
¢ hox

s . . ac n .
Using the Wagnerian expression & = TGE and noting that for small 2 and §

the induced mass is m* < 2i oc®, we derive the greatest transport effect in the

form

nt  aqf nt o Hho,

) __lEe ek o @ ow o ho
#(a,f) =1 ™ i 1+ 3 tgb+8!_g_ﬂ_1; -
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At large f the induced mass is relatively somewhat smaller, since the
longitudinal transport is also smaller. The condition for separation-free
flow should consist in the fact that the velocity at all points be directed into
the fluid; hence k, — xw, should be greater than zero.

The acceleration # of the layer is defined as the projection, on the plane
of the layer, of the absolute velocity of a point moving along the x axis with

relative velocity V, =i T =i(—V,+u,). Theprojection ofthe accelerationonthe

inner normal is

av

n

e g,

dav, .
" .T", where function x* can have

a value different from that given above; only in particular cases, when o, =0,
does one obtain x* =x(x,f). The general expression for the pressure force
and moment of a planing surface of an arbitrary profile on the fluid is

m dV, aM V
F"=_§{7 L /S }dx,M=—§xdF. (6.17)
k

For an arbitrary motion of some profile the calculation of force F, and
moment M, reduces to the calculation of m*(h) and M (h) corresponding to the
values of x* and x(a,f), as well as to numerical integration along the length.

8. Equations for calculating the planing of a profile

A fin-shaped plate lands on the water surface at constant angle of attack
a=const (o, =0). The velocity vector V, is inclined to the horizontal angle 6,

av,

dv,
S0 that V, =V, cos(a + ) Va=Vosin(@ + 0, — = =L sin(a +6) + Vocos(@ + 0) - .

We denote for brevity

(-1

E= (l——cosﬂ)(l + ;- ‘;;)

The pressure force on the fluid, F = —F,, is found to be

o av,
fa=2. ﬁ)[hga Vi+i@ b)atga' d!]+"‘ (6.18)
For small a and 8, when V, = const, we have V, = V, (a + 8); Bz-‘;‘- and
dv, . °
rn o7 =h Substitution of these expressions into (6.18) yields

o 4 i) o (6.19)
Frnm®(@,p) |5 Ao 1+V0—a. + E(@,B) = .
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. h
Theoretically the moment is M, = ls LF = —;-—&’i F,; actually, however,

it can be somewhat higher due to the pressure drop at the transom.
Comparison of theoretical results obtained from formulas (6.18) and (6.19)
with experimental data on steady planing, as well as on rebounds, usually
gives satisfactory agreement at angles of attack of up to 12 —15° /14/.

Sedov /20/, as well as Sedov and Vladimirov /21/, present much experi-
mental data on the planing of fin-shaped plates (at B = 22.5°) over their partial

width. An experimental relationship was established of the form I';A = f(a),
or

where ¢, is the wetted length along the planing element, and A = P,cosa is the

load on the water.

Expression (6.18) yields

142, 2
A _ 1 _ + 4 tgp
2A V @ (B, a)sinda (_“ —_ l) Y nsinda
o 28

With this relationship one can compare the experimental results of /20, 21/
with those obtained from the simplified theory and with the "transport
theory' developed here (Table 12).

TABLE 12
thf :%
a, deg
. simplified | “transport
experiment .
theory theory
2 217 28.2 28.0
4 10.1 10.7 10.4
6 6.0 6.31 5.94
8 4,15 4.75 4.15
12 2.62 3,16 2,52
16 1.82 2,11 1.817

A similar comparison was made with the experimental results of Kolosov
/21/. The excellent agreement between experimental data and results
obtained from the transport theory point to the fact that it incorporates the
main features of the effect.

We now compare (6,18) with equations (6,10). The first term of (6.18)

. . M : .
contains the expression ®(a,feh2V, = -uTV". =B, representing the separation

momentum, i.e., the specific momentum imparted to the fluid layer
approaching the transom. The rate of momentum production at the transom

v, e s crs : .
is tg:‘z =Mi%g(:—+§l; it is composed of two velocities: the velocity of impulse

discharge V, =cos(@ + 6), and the rate of increment of the momentum ''tied"
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sin @

to the planing surface V,=V, (Figure 73). When the planing surface

moves parallel to the free surface (8= 0) the entire lift is determined by the

momentum flux flowing past the transom; hence F, = B, V,cosa. It is easy to
3

afh” is equivalent to the induced mass
22

show by comparison that ¢ (a,B)t (e, B)

An. The nature of hydrodynamic forces during planing is precisely the same
as on motion within the fluid.

y X
Homothetic center \ W
A g Y,
el

Free boundary Vo

Horizon

FIGURE 73.

When a cylinder of radius R is placed in a fluid so that 4, (the transom

immersion) is small, then according to the Wagnerian theory — . ‘QF and

hence —%‘—= —I;l (see Section 8, Chapter IV). The pressure force on the fluid

normal to the cylinder axis is

>

R

"
/ 'l/ R
F,=qvr 0219 2R<S ]/—, (1o 27) (%)
Y

tg a
i a-)

h

This integral can be evaluated by retaining in the denominator t + a |/ % at 4+
., and this yields

in? (& + 0) 3 / R
FanJIQVz—SILtEaa——th{[]+a’(—2+|n4 Tk)]—
2 b [ 4 _& L3
~ T(T""““]/ h.)—m‘”ﬂ}- (6.20)

We recall that if an infinite cylinder is immersed such that its generatrix
is parallel to the free surface, then the specific pressure force on the fluidis

Fo=2Ri[a =/ F(1+me )/ F)].

These expressions are valid at low ';?— For planing of a semisubmerged
cylinder the induced separationinduced massis A= % oR?, but sincethe spray
sheetis directed vertically upward, atthe cylindertransomM = %A;, the separa-

tion momentum is MVa, and the momentum flux from the transom is MV%; the
normal force is
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Fomeh oRW (6.21)

The above considerations can be used for an approximate calculation of
the lift in other cases of interest.

9. Equations of motion

The equations of two-dimensional motion are expressed in vectorial form
as dB = 4
DA P =F DM =M, (6.22)

The expressions for the force vector F° =iF, + jf; and for the moment M;
contain terms determined by the momentum flux rolling off the body
according to {6.11) and (6.12). These equations differ from equations
(6.8), which are valid for an ideal fluid.

It is sometimes possible to consider the motion of a body along the x
axis independently from the transverse motion and to establish a relation-
ship between velocity V, and time ¢ or the travel distance s. The two other
equations (if we omit w,and m,), after division by the constant velocity V,
(since ds=V.dt), assume the form

F
Xl o, = ﬂl

‘

W
p (6.23)
mwaas) 2 (s + (M2l 0, + Ay —+(x + iV, = 5=

Analysis of system (6.23) is not difficult. The use of these equations
provides for convenient calculation of the path traveled by the body inside
the fluid. The characteristic equation of system (6.23) is

(A +m1p + A5 Agp + tm + Axy)

= Ap* + Ap + A=0,
AP + (g + A5 (g + Gg) D + (g + A, x3) e

where
Ay = (hyy + M) Ay + ag) — A2,
A =y + myhx? + (A + ag) A — 2hoh x;
A, = (AR — mh,y) — (hyy + m) A x,

The induced mass A, for bodies of revolution is equal to the mass of the
displaced fluid; Ay =7 Ay, where r  is the abscissa of the center of the
volume; Ay —r,kn, where r; is the radius of inertia.

If p, and p,, the roots of the characteristic equation, are negative and

real, or have a negative real part, then steady motion of the body is pos-
% d
sible in which d‘T: - 0 and % —0, while v, and o, asymptotically attain

steady values, which are independent of the initial conditions but are
determined from the right-hand side of equation (6.23).
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For planing with fixed « the approximate equation of motion with smezll
immersion of the planing element is obtained quite simply: mh + F, = Feu .
The external force F._may here be the gravity force gm. It is found that

rebounds of a fin-type plate moving with high translational velocities are
damped out quite slowly.

10. Vibrations of a slender body. The flapping wing

It is of interest to estimate the characteristics of a vibrating or deform-
ing slender body from the standpoint of the generation of thrust and its
operation as a flapping wing. This study can explain to some extent the
swimming mechanism of sea animals.

The vortex theory of a finite flapping wing /16/ has not been sufficiently
developed, and practical calculations using it are made difficult by the
fact that the forces at each instant are determined not only by the instan-
taneous state of the motion, but also by the vortex trail left behind by the
wing, which contains the "history of motion." The theory of a slender body
with separation at the trailing edge and the pierced-layer theory make it
possible to avoid difficulties involved in the construction of a model and
calculation of forces.

As is known from the preceding, element ds of body length is acted on

by the inertia force dF = d—i—(m*vn)ds and suction force dF,, determined by

the "circular pressure'; the integrals of the projections of these forces

on the average direction of motion ¥ and on the normal to it n yield resultant
forces FF and F,,(Figure 74). Induced separation mass A, separates from
the "tail" of the body (x = x) which has a tangential velocity V,. This mass
carries into the wake a separation momentum per second of ip,V , directed
along the normal separation velocity v,. The reaction force acting on the

body is — Ay, V,. In addition, the body is acted on by suction force P,. The
kinetic energy remaining in the wake per unit path of the "tail" is A v—il

In the case of periodic vibrations of a body moving in the § direction
with velocity V., the average useful power over period t is equal to the
sum of powers developed by suction force P and impulsive force [:

(P} + (oY cosE o, Vgl = (P} + 11} = [A]. (6.24)

The kinetic energy of the wake averaged over the period is given by

A2 2
1 ,Un Jun V
g va= )= e (6.25)
[
At the start and termination of each period (0, v, 2t, . . .) the kinetic energy

"bound" to the body is the same, but still another wake wave containing
energy (El v is added over the period. The thrust, over path V,1, performs
an amount of work equal to {A)x. Consequently, the external e‘nergy source
over the period should perform work {N}t = {4+ E}1, and the hydrodynamic
efficiency is

oA
{nb} (A}-}-(E) —{ ' - (6.26)
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FIGURE T4.

This simple theory is the first approximation of reality. Apparently
partial separation occurs at the lateral surface of the body, and this separa-
tion is also disregarded. However, the boundary layer at the surface of a
vibrating and deforming body apparently forms differently than in ordinary
cases, and the suction force can be more efficient. Some simple cases are
considered below.

11. Small vibrations of a solid slender body

We assume that the coordinate system &, n, { is associated with the
stationary fluid, while system «x, y, zis associated with the body (for
example, with a delta wing possessing small aspect ratio). We shall
consider two-dimensional motions, when the z and { axes are parallel,
the motion of the body center 0 occurs on the average along the § axis,
the absolute magnitude of the velocity of the center is V =V, =const,
but the velocity vector makes an angle ¥ () with the ¢ axis, while the x
axis of the body is inclined at angle 9¢(f). It is assumed that angles y and
% are sufficiently small so that the sines and tangents can be assumed
equal to the angles, while the cosines can be taken as unity. Under these
conditions

VisVe V,=V@p—0=0—V8& ou,=0,=VE—0+xd o=>=

Velocity v, as above, is the normal velocity at the separation edge,
the abscissa of which is x=1x,. If the span of the sharp rear edge 2R,
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is aligned along the z axis, then the separation induced mass is A = onR? (for
example, a delta wing).

If we assume the above velocities, the hydrodynamic forces exerted by
the fluid on the body, in their projections on the moving axes, can be
determined from (6.4) and (6.10) as —F,,, — F,,, — M,;. These formulas
(with subscript 2 omitted) are

2

F o= — bV 0, — hyo? —A ;‘,

F —122 dt +}"26 d, +)"l xl/l'

av
M, = hpgV V4 hagVi0, 4 hog —F +-Agy == +A(x, V0

66 gt (M7l

We recall that these formulas yield forces acting on the fluid. We shall
be interested in forces acting on the body projected onto the § and n axes:

s = —(F cos(x, §)+F cos (y, B~ —F, + F %

Fn = —(F cos(x. ) + F cos(y, m=—F4—~F,

The kinetic energy remaining per unit length of the wake is
Tl Vp—® +xd*=E . This energy is equal to the work performed by

suction force P'over unit path length along the § axis. Substitution of
the velocities and accelerations into these expressions gives

. . . . C e A §\2
Fo= 0,V (g8 4- 9 — 208 -+ Ay (9 + O D+ Tl V“{(\H—%’) - ﬁ’];
, .. T 3
fnz_[xwvup—ﬁw Aﬁﬂ+x,v’<¢+"7— )] (6.27)
, . . e b
M, = = [V = 0) + Vb +a - Ve (v + 55— 0)].
The energy expended in moving the body can be expressed in the form

N =—an]—M2{‘}=A+E=}»HV2(1b{p—ﬁ{‘)) + AV (P + i) +

H;V’[\V— By + 2p T — 01D +(3)]
The instantaneous efficiency is then

A
My =%

where A = FEV,
We now consider simple cases,

1. Rectilinear and uniform motion of a body (wing).
In this case ¢ = =0. Consequently

IN'a . N i
F=Fo= @ — 90 =AVie—
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tends to unity if 9 tends to¢; at §=0, 1, = 13 For

this case Figure 75 shows graphs of the variation in quantities N. E, P and [,
divided by AVt as well as of n, as a function of # at y=20°.

2, Harmonic oscillations of a body. We assume that n=asink,
or n=Vy =Vy,coskr, and O = §,sin (kt + 0).

¢+ B

The efficiency n,=

NEDLT 7
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FIGURE 75. FIGURE 176.

Calculations yield the following average useful power over periodt:

ING e 3
) = () =0 (B ) 0 4 2 2 gy, cos0 — 03]

The average wake energy is
INE

o & 2 .
{E} = T[ g+(’l+) ﬁg+2x7‘k- \po\‘}ecose—2xp0\$asnn6+ﬂg];

the average expended power is
R

MV’[ 2 (xlk)? 2 : ]_
{N}=T v+ 5 1‘}o+27-\b°\‘)°cose—-\poﬁosm9 ;

the average efficiency is

(6.28)

¥, + (_x&_k 42 %k—lpoﬁocose_ ?
Xy

n,) = ) .
2 ["P% + (V_k>9 942 f/‘k PoBaCos O — Pyitg sin 6]

It is seen from these expressions that in order for the body (wing) to
have thrust during purely torsional oscillations, when ¢, =0, the Strouhal

number S, = % should be larger than unity. According to Nekrasov /16/
the condition for porduction of thrust for an infinite wing with allowance for

the vortex trail is S, > 0,942,
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. . 1 1
The previous formula yields, for y, =0, the expression [q}= -2—(1 — F)
% !

for the "impulsive" thrust {F,} = —— 92 (Sf— 1). For example, a delta wing

with a span of 0.5 m and a chord of 1 m should, at |x,|= 0.5m, vibrate with
frequency k> 10 radians/sec in order to develop thrust at velocity V=5m/sec.
At 9,=0.1 radian (5.73°) and k=20 sec”l, for this case, when moving in
water, obtains a thrust of 3.75 dynes at efficiency {n,}=0.375.

Setting u=‘%‘, and making use of the fact that the separation edge is
o

usually located at the trailing part of the body of revolution (%1 <0), and
introducing the Strouhal number §;, the preceding formulas can be expressed
in the form

M'a
[Fy} = 'T B2 (1 + 4? (S — 1) — 2uS, cos 6);
1+ u?(S}— 1) —2uS, cos § (6.29)
2(1 +u’Sf——-2uS‘ cos 8 — u sin 8]

{n,} =

The characteristics of a wing with small aspect ratio, at 8 = "—2’, are

shown in Figure 76. It is interesting that the efficiency is the highest at
S, =0, i.e., for quasisteady motion of the wing. The impulsive thrust
coefficient increases with increasing §,;; however, the validity of the
principal hypothesis for high S; requires a more careful check.*

12. Motion of a flexible body

In this case it is best to use the inertial coordinate system x, y. 2z which
moves in a straight line and uniformly relative to the quiescent fluid (the &,
n, ¢ system) with velocity V, =V, while the flexible body occupies the x axis
segment from x=x, to r=x(Figure 74). The ordinate of the body along the y
axis is denoted by n=n(, ). If the cross-sectional shape is assumed to be
unchanged, then the specific induced masses will depend only on the abscissa
x, and in general m* = m*(x) = KoR*, where K is some constant for each specific
cross sectional shape. In the case of a circular or elliptical cross section
with major semiaxis R, K=uxn. The velocity of the hole in the pierced layer

normal to the curvilinear axis is v, =OT"I——V% =1, — Vn, ; the specific

momentum of the fluid is m* ) v, (x, ).
The specific normal force acting on the body, generated upon its passage
through the pierced layer, is

—dF, = Ta'_ m™ (X v, (x, 1)) ds = [— d;"—; Vg, —Vn) +
+ m* (n, —2Vn, + V¥ ) ds

In addition to the normal force, element dsis acted upon by the "circular
o}

pressure" —2nR >

» which yields the arbitrary force applied to the body

¥ The author is unaware of experiments with high-frequency fluctuations of a wing in a flow, However, the
method of high-frequency oscillations is used to determine the induced mass, and consequently, a near-ideal
flow is attained. All the assumnptions of the pierced layer hypothesis are, however, valid at relatively low S,.
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2
dFs=[— 2nR%-%"i]ds=—%m,—Vn,)2%s; ds, (6.30)x

where S is the area of the induced mass (nR?).
The projections of elementary forces on the x and y axes are

dF = dF,—q dF, (6.31)
dF,=dF, + v, dF,

The total instantaneous forces acting on the entire body are obtained by
integration:
X3 X!
Fy= {dF; F,={dF,

*1 x

According to Section 10, the calculation of forces F,and F,for periodic
motion can be avoided by integrating equations (6.31). For this it suffices
to use the characteristics of the wake, which can be calculated if the
trajectory of the "tail" is known. However, suction force {P| must still be
calculated. '

The instantaneous value of the suction force, according to equations
(6.31) is

Tod 4 S
P = —S o o [nR () dx.
Xy

The specific results depend on the form of functions n(x, Hand R(»).

The wake momentum A u, V,can be calculated in the same manner as for
a solid body. In fact v, =V(py—®). The instantaneous force generated by the
momentum flux is

V=AMV —Ho=LVMm—-Vnn, for x=y,
and the energy of the wake is

.
E' =— (n,—Vn).

Let us assume that a wave travels along the flexible body in the negative
x direction with phase velocity ¢ and constant amplitude y,. Then

n=n (T2,
Clearly

p=n—Vn, =P - WF (—f—— Bt

The normal velocity of the "tail" at x=x,, for a body of length L, =% — x,, is

* The circular pressure is given by this expression for a circle and all the ellipses (including a plate) with
semiaxis g for motion at velocity v, along the perpendicular axis.
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Ay

We assume

, [ Ct Xg— X . a4 kX
f(T- i )=sm(T I )
and
Xg— X
nR’(x)=nR$-“T—.
14
Hence

2

d R
E(RR’)='—T§-.

Simple calculations yield values averaged over some period:

PRCRES [P

v
2 P ( ] )
=l (5] 692
w =5 v (2[5 6 -l

Simple calculations show that a fish with a tail span of 0.5 m {3 =20kg/m)
and relative amplitude ﬂlﬁ_ = 0,1 develops, at velocity 10 m/sec for —V? = 0.4,

on the average 3750 joules/sec of power and produces a thrust of about

26 dynes (of which 45% is due to the suction force) at a mechanical efficiency
of about 0.7. The length of the fish is L, = 2wl, where n is the number of
waves over length L.

The pierced layer concept makes it possible to estimate forces for a
large variety of cases of bodies in a fluid. It is seen from comparison with
experimental data that these estimates are sufficiently accurate and reliable.
This makes it possible to expect that these methods, when appliedto cases
for which experimental data are unavailable, will yield results close to
reality.
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Chapter Seven

CAVITATING HYDROFOILS

When hydrofoils move at high speed, cavitation may arise at the low-
pressure part of their surface. Cavitation, which is related to the
formation of gas and vapor bubbles, markedly modifies the hydrodynamic
forces. As the velocity is increased, bubble-type cavitation transforms
into developed cavitation, when larger cavities with smooth inner boundaries
are continuously cast off the foil {also known as supercavitation]. The
development of cavities extending far past the hydrofoil is also aided by
their entrainment of atmospheric air.

Studies show that the work performed by a cavitating hydrofoil is, from
the mechanical standpoint, identical to the work corresponding to continuous
flow past the hydrofoil. Hence the well-known theory of wings with finite
span is for the most part applicable also to cavitating hydrofoils, irrespective
of whether the cavity forms at the rear of the foil or whether it extends
over the entire upper surface of the foil. The specific features of a hydro-
foil consist in the effect exerted by the close-by free surface, which
primarily affects the induced drag and downwash, as well as the lift of the
profile. However, for thin cavitating hydrofoils the proximity of the free
surface is primarily equivalent to the effect of the upper wing of a biplane
on its lower wing.

Usually hydrofoils and (all the more so) cavitating hydrofoils operate at
such high velocities that the weight of the water has no appreciable
effect. Hence here the entire theory pertains to the motion of the foil at
infinite Froude numbers. However, for cavitating hydrofoils, particularly
at small immersion depths, when the upper streamline markedly distorts
the free surface, the asymptotic theory, which is analogous to the theory
of a wing in a continuous medium, must be substantially modified to conform
to the special features of hydrofoils.

1. Flow past a profile and past finite-span hydrofoils

Figure 77 shows four patterns of flow past a hydrofoil profile., Pattern
I corresponds to continuous flow, when the Chaplygin-Zhukovskii condition
is satisfied at the trailing edge. The streamline flowing down from the
upper part of the profile moves with the same velocity as the lower
streamlines; both streamlines merge at the back of the profile. Pattern II
depicts cavitating flow downstream of a curved wedge; the streamlines
flowing down the upper and lower parts of the profile are now separated,
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resulting in the formation of a cavity behind the profile. Since the flow
velocity along the cavity boundary is constant everywhere, the Chaplygin-
Zhukovskii condition is always satisfied at the trailing edge at the top and
bottom of any cavitating profile. Pattern III differs from pattern II only by
the fact that separation of the top streamline does not occur at the trailing
point D, but at point £ at the upper surface of the profile. Pattern IV
corresponds to Rayleigh flow past an inclined plate AB, when the upper
streamline separates at point A. Obviously, flow patterns III and IV are
not, in principle, different than pattern II, since in all these cases we

can consider the flow past curved wedge ABD.

4

= &* ~—— —
Sy
W )

FIGURE 77. FIGURE 78.

The idea of constructing a noncavitating profile with a trailing cavity
consists in the following. Calculations of cavitated flow past a thin wedge,
due to Bobylev /10/, show that the pressure at the edges of the wedge is
elevated; hence the disturbed velocities at the edges oppose the free-
stream direction. It may be assumed that a vortex sheet with vortex
strength y is distributed along the lateral surface (or approximately along
the axis of symmetry) of the wedge. This sheet induces velocities coinciding
with the free flow direction at the upper edge and opposing the free-flow
direction at the lower edge. The vortex-induced velocities are added to the
perturbation velocities.produced by the wedge in such a manner that the
velocity opposing the free stream decreases at the top and increases at the
bottom. As a result the pressure at the top edge of the wedge decreases and
at the bottom wedge increases; this produces lift. If the resultant pressure
at each point of the upper edge is still higher than in the free stream, then
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there will be no cavitation at this edge. It will be seen below that in order
to obtain flow about a wedge with a vortex sheet, the wedge axis must be
curved in some appropriate manner.

Figure 78 shows the flow pattern about a finite- span foil in an infinite
flow. The cavity developing at the rear of the foil will cut a hole S, in
plane Z,, perpendicular to the flow velocity. Had the flow past the foil been
noncavitating, then the free vortices cast off the foil (in the idealized
formulation) would have been aligned along the dashed line AB. Actually,
both the vortex sheet AB and cavity S, behind the foil perform a complex
motion and roll up at the edges, with resultant departure from symmetry
relative to the z axis. However, as in the vortex theory of airfoils /6/,
we shall estimate the effect of the cavity by assuming it to be symmetrical
relative to the y and z axes. The lift Y on the foil is the reaction of the
foil pressure on the fluid which, in the wake behind the foil, induces down-
wash of the wake and its surrounding fluid. The field of absolute velocities
in the I, plane is shown in Figure 78.

For a hydrofoil moving at depth # close to the free surface, the flow
pattern behind the foil in the I, plane is shown in Figure 79. Below we shall
show that such a flow arises past a biplane when the distance between its
wings is 2h.

~ N\ ‘ / —— Image flow
/ (4 \; i J/ 1= N
/ _//' ] ; i | \\J \
e T 3
' i e 1
\ PR
-'—.1_‘__ o4 // z
N e / / \ \ ™~ Actual flow
/
z L Outline of schematic cavity
FIGURE 79.

It is clear without going into proofs that when the top and bottom
boundaries of a cavity are merged, a vortex sheet is produced corresponding
to continuous flow past a foil, and the entire theory of ordinary airfoils will
fully apply to this case. The existence of cavitation modifies the flow about
a hydrofoil; these changes are considered below.
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2. Lift and induced drag

We now apply the momentum theorem to the control surface formed by
two infinite planes X, and Z, parallel to the y2 coordinate plane, where plane
2, moves ahead of the foil while Y, intersects the wake in the manner shown
in Figure 78, The free stream velocity is V,, and is directed along the
x axis; the projections of the perturbed velocity vector v on the coordinate
axes are v,, v, and v,.

From the momentum theory the drag X and lift ¥ are

X = S fe(Vy + v,)? + P),dS —é (e (Vo + v, + P, dZ;
S g (7.1)
Y = 5 [o(V, + vav,] dX — S lo(Vo+ ve) v,). dZ.

L,

The pressure in the X, and Z, planes is obtained from the Bernoulli
theorem, for example, P,=C — &L;‘[(V0 + v+ +1). The expression for lift
does not contain the pressure, since the control surface is perpendicular

to the flow.

Note. The application of the momentum theorem to the calculation of
forces acting on a foil requires care in selecting the control surface. It is
known that the vortex system trailing the foil is equivalent to doublets
distributed along the surface subtending the vortex. If the foil is replaced
by an equivalent vortex L with velocity circulation I', leaving behind it tip
vortices (horseshoe vortex), then the equivalent vortex sweeps out per unit
time an area V,L, the momentum of the fluid increases by an amount ofV,L =Y,
and this quantity is equal to the increase in the moment of a doublet whose
axis is directed oppositely to Y. The moment of the doublet is then
Yt=glLl,, where l‘ is the total cavity length. Velocity v in the Z, plane is of
the order of —;Q, where r, is the distance from the coordinate origin to the

o

Z, plane. Integrals over %, which contain the velocity ¢ or v, to the first
[

power, will be of the order of 7"-, since the area of plane Z; increases with
[]

increasing als 2. In order for these integrals to tend to zero it is

&
required that Y —0, and this can happen if r is of a higher order than ¢,

(for example,rg = 2).

We now apply the continuity equation

5 VdE — S (Vo+ 00dZ =V, S, — { v,d2 =0.
I -5, Sa
2
Noting that the pressure in plane =, is p,=C _% while the pressure within

)
the cavity is p,, and substituting these results in (7.1), we derive
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X =Sk(p0—pk)+—g—5 @+ dz— 5 (qaz
Sk

> (7.2)
Y = —gV, S v, d2—e { v,0,d2

Sk Sy

The largest cavity, and consequently the greatest effect on the flow about
the hydrofoil, is obtained at zero cavitation number and p, =p,. Integral
—";—S (v +0v)dZ =T expresses (from the physical point of view) the kinetic

Sk
energy of the absolute motion of the fluid in unit-thickness layer g,;

integral Qj 0,dZ = B, represents the momentum of the fluid within that layer.
Sk

The fluid motion in the transverse plane X, far downstream of the body is found
to be virtually two-dimensional /6/.

Note. We show that integrals

-] oo
h=2{ 2azand hH=ef ez
S Sk

tend to zero as plane %, is moved downstream of the foil to infinity with

{
x of the order of -25-. Velocity v, is at its maximum at the cavity boundary,

where it is proportional to % y;2, provided that y, =f(x is the equation of the

cavity contour in the xy plane. Hence

x
15 < vy 0 S v,dX = v, B,,
Sk

In fact the hydrofoil is trailed by a three-dimensional cavity, which expands
slower than a plane cavity. The ordinate of the plane cavity increases as
V%, and consequently y;,? decreases faster than l/y, and as x—»co, /, tends

1 1
to zero not slower than T Hence /, decreases not slower than =

Neglecting integrals /, and /; due to their relative smallness we obtain
X=T,Y +V,8, =0. (7.3)
As is known, for a foil with elliptical lift distribution over the span the
momentum in continuous flow is B, =m*V,, where m*is the induced mass
per unit length of plate with width L, equal to QL:- L, while V, is the vertical
wave velocity far downstream of the foil, Clearly in this case the kinetic
2

. %
energy is T =m* -,f”-
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The induced drag and lift are related by an expression obtainable from
(7.3) by eliminating V,:

X, = (7.4)

= 2m*v3®
The 1ift and induced drag can also be expressed by the standard equations

o3 V3
X‘ =C,‘,Sch; Y =c,,Scr -

Noting that the aspect ratio is A = EU_ and substituting the above

cr

expressions for X;and Y into formula (7.4), we obtain the expression for

. . A
the induced drag coefficient known from [thin]| wing theory, ¢ = -;[-{- The
flow downwash angle in the plane of the lifting vortex is a, = %; the
downwash angle far downstream of the foil is 2a, = — ;*L = Qc—“i.
]

3. Effect of cavity on the downwash

We now represent the velocity potential of absolute flow in plane I, by
the sum of two potentials ¢, 4+ ¢,, assuming that ¢, corresponds to the
general descending motion of the cavity while potential ¢, corresponds to

its expansion. Integration over theclosedloop enclosing the cavity in the
plane £, (with allowance for our assumptions) yields

@%‘i—‘ ds =0, §) @, COS (y.hn) ds = 0.

The momentum component is
By = — § o, cos (y, ) ds, (7.5)

while the specific kinetic energy is
g B,
Te—4do +e (o + 5)s (7.6)

Since potentials ¢, and . satisfy the Laplace equation, we have on the
basis of Green's theorem

2/
/= @q:,a;‘:ds=§)(p,%t‘-ds.

For a slender cavity integration over contour s can be replaced by
integration over camber [mean] line AB(Figure 78), traversing it in both
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directions. Denoting the values of ¢ and % above line AB by a plus sign

on”

. . . —- d(p1 d‘p
and those below line AB by a minus sign, ¢, =—¢,_and it
while 42 _ 9% ly, 1= ineti

Pyyy = Py, AN Bng = e onsequently, 7 =0 and the kinetic

energy consists of two independent terms:

Q O 4
T=‘_T<§)‘P1 ;: ds—‘%"(ﬁ% g:, ds=T,+T, (7.7)

This expression can be given the following mechanical interpretation:
energy T, corresponds to the general motion of the cavity with velocity v,

and its deformation when moving away from the coordinate origin. As was
2

1% . .
pointed out T, = m* ._2&, the corresponding momentum being B, =m*V/, /15/.

Energy T, pertains to the expansion of the cavity and numerically should be
equal to the Bobylev drag, induced for cavitated flow past an undistorted
wedge or other profile.

We shall now clarify the effect of the cavity on the value of the induced
velocity in the plane of the lifting vortex. For this we use the potential
theory in the form

— L ({4 1 2 (1
=T “ an T tw X‘Pv;(‘r)d&

We take as the cavity-surface element ds a strip of the contour contained
between planes I, and 3, separated by distance dé. The distance between
the far point A(x, y, 2) and the point B, n, {) on contour s in plane 3, is
r=V{x—8+ (y — 0 +{z—0F » while the distance between point 4 and the
center of the cavity cross section in plane &, is r, = V(x—E® +4* +2*. For
distances r and r, large compared with n and { we have approximately

1
- =

A=

I e ]

As a result of substituting these expressions into that for the potential

and making use of the properties of potential ¢, and of the symmetry relative
to the xy plane, integration over s gives

1 B
b= — g (s, + ) L

The induced-velocity increment at the center of the lifting line (x = 0,
y= 0, z=0) due to the motion of a cavity element of length &t is

B 1 B,\.8
60‘ =90 ‘? Z—F(S.Vy"‘ T’-)—E—E— (7'8)

For continuous noncavitating flow past a foil §, = 0 and the moment of

B m B
an elementary doublet is T” rather than §,V, +—QL. We denote the induced
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velocity arising at the center of the lifting line on cavitated flow past the
foil by v, and the induced velocity of the same foil with the same 1lift
but without cavitation by v;; the cavity cross-sectional area at point x=§,
is denoted by S,(%). Since the induced velocities are proportional to the
strength of doublet moments

. S, GV
v,.=vl[1 +—QLB§—”/‘(§1)].

¥

Had the cross-sectional area of the cavity been S, () over its entire
length, then correction function f(,) would have been unity. However, for
¢ > L the cavity is wider than at point x =&, and over the range 0 <t <§,
it is narrower than at point §; hence f(¢,) differs from unity. In order to
take into account the effect of an infinite expanding cavity, we shall first
subtract the effect of a cavity with constant cross section S, () at the
axis segment from §, to infinity, and then add the effect of an expanding
cavity.

]/ b .
The expansion of a plane cavity is governed by y,= :‘ VE, where bis

the foil chord and ¢, is its drag coefficient. For a delta-shaped foil the
Bobylev drag coefficient is ¢ = cg =% u? /10/. A cavity forming behind a
finite hydrofoil expands slower than a plane cavity, and therefore for a

wedge-shaped profile S, < -:— ul? l/ —i— l/ TE . Hence

oo dg =2 dE 5
f(§1)=l+S§T—£ Em =5 at h=1
&
Here & denotes the distance from the origin, referred to the span L. The
induced velocity is

% o 5 @S,&) Vy — 4 2
T~l+?T~I+T“ T=]+T (7.9)

For slender delta-shaped foils with large aspect ratio the velocity

ratio L is close to unity. For example, if 2p = 0.1 radians and the aspect

Ui

ratio A = 5, then —ug—z 1.042, i. e., the induced drag increases by 4.2% as

compared with a noncavitating hydrofoil.

4. Effect of hydrofoil immersion depth

The derivation of the momentum theorem presented in Section 2 applies
unchanged also to a hydrofoil moving horizontally at depth 4, and so
formulas (7.3) and (7.4) are applicable also to this case. Observations
show that a cavity behind a hydrofoil has no large transverse deformation
over a large length and is similar to Prandtl's "board"; at the rear, where
the cavity breaks up, it degenerates into clearly defined vortices with
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gas-bubble and foam-filled cores. The generation of a cavity is shown
schematically in Figure 80. Hence, introducing the induced mass m* of the
wake and treating the flow behind the hydrofoil as induced by "impact

of a plate,'' we derive a pattern close to the actually observed flow pattern,

FIGURE 80.

The effect of the proximity of the free surface, which consists in
increasing the induced drag, can be quite graphically attributed to the
reduction in the induced mass at the wake with reduction between the
hydrofoil and the free surface, and consequently, the need to impart to the
wake a higher transverse velocity for exciting the same lift. The induced

mass of the plate at infinite depth (A/L — co) is m}, = ¢ 5 L*, while at the

surface (4/L - 0) the induced mass is half as large and equal to m] = Q—g L2,

Thus m* (%) = m;/k (—Z—) The induced drag coefficient ¢, and the induced

downwash angle «, are related by the expression

2 2
€ S5c:@ c

h
Cu = — =T:'k‘(T)=cﬂ" (7.10)

&)

Function &, (LL) can be calculated by solving the problem of impact of plates

separated by a distance 24 (see Figure 79). The values of 4 calculated by

Fedorov are given in Table 13. At times the quantity =, =—,:— will be required.

TABLE 13

h
T 0.0346 0.0588 0.185 0.393 0.551 1.434

&y 1.715 1.610 1.308 1.137 1.08 1.032
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The effect of hydrofoil immersion can also be calculated from other
considerations. For infinitesimal disturbances of the free surface the
condition of pressure constancy at the surface yields for the boundary
condition of the perturbed velocity potential ¢ at y = 4 the expression

—3}— +—V%-gT(P = 0. For very high velocities (more precisely as V, > o)

the second term drops out and condition —?;% = 0 consists in the fact that

perturbed velocity u=—gf—is constant at the free surface, but since 4« =0
at x=— oo, we concluded that « = 0 everywhere. In order to satisfy this
boundary condition it may be imagined that the upper half-space is also
filled with a fluid, while vortices and sinks with potential j are placed at the
image points with respect to the free surface. Potential ¢ should be selected
so that the total potential ¢ 4 ¢ satisfies the Laplace equation A(g +q) =0
and the above boundary condition at the free surface. In particular, the
vortex in the bottom half-space will be mapped onto the upper space with
circulation T of the same sign, while the sources are mapped with sign
reversal. The motion of a hydrofoil at depth & is thus equivalent to flow
past such a foil in an unstaggered biplane cell with interfoil distance of 2h.
Since the actual and image foils have the same circulation and
therefore the same lift, the free-surface proximity effect is equivalent to
mutual induction of the biplane foils. The induced drag of a hydrofoil is
greater than in an infinite fluid and is obtained from the expression

Y:

X, = M;OV’(I +0) (7.11)

Quantity (1 + o), taken from biplane theory /17/, is equal to the value of 4,,
calculated by Fedorov from the problem of twin-plate impact /24/.

For small depth of hydrofoil immersion, the free surface above the foil
becomes distorted and the thickness 4 of the water layer on top of the foil
differs from the value of 2« of a stationary foil. The free surface in relative
motion is a streamline; hence the central streamline (z = 0) satisfies the

_

equation {,‘i Velocity v, is induced by the vortex system of the
o

hydrofoil proper, as well as by the image system. Calculations yield the
approximate formula

hs[=h-—fT”b—(lni—l). (7.12)

213

Strictly speaking, the perturbations of the free surface due to the
hydrofoil motion should have been taken into account in mapping the vortices
and in constructing the biplane pattern, as in calculating the induced wake
mass. In addition, some reduction occurs in the velocity of flow past the

hydrofoil due to the image induction ( Vo = Vo— 4—%‘ ). However, a theory for

taking these effects into account has not yet been developed, and so we shall
restrict ourselves to the above remarks.
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5. The lift of a profile at small immersion depth

In addition, the increased induced downwash near the free surface or
the closeness of the second wing of a biplane results in reducing the
derivative of the lift coefficient with respect to the angle of attack. This

a
effect is taken into account by introducing the function x, (%) = :” . Data
3

obtained from calculating function %, from Carafoli's formula /6y7 (carried
out by Fedorov /24/) are presented in Table 14,

TABLE 14
h
- 0 0.1 0.2 0.3 0.4 0.5 1.0
oY 0.5 0.68 0.178 0.84 0.89 0.92 0.97
2n
e 0 0.2 0.4 0.6 0.8 1.0 2.0
EN 0.5 0.62 0.1 0,77 0.82 0.86 0.95

We shall consider a second, quite simple derivation of the expression
for functionx, (2—:-), based on the Lagrange equation of the second kind.

Suppose a plate with width 2a = p has velocity V =iV, + jV, relative to the
stationary fluid (Figure 8la). The motion of an incompressible fluid is
determined uniquely by the motion of the plate, and hence the fluid can be
treated as a system of material points with ideal holonomic constraints.
For translational motion of the plate we have two obvious generalized
coordinates, which are the motions along the y and x axes. We introduce
a third generalized coordinate a, equal to half the width of the plate, and
determine the suction force. The kinetic energy of the fluid will be

v: : : .
T = mpa? —2‘1- , where nga’=m*is the known expression for the induced mass.

Applying the Lagrange equation :—t-% —7"} = Q, to the generalized
q, g

coordinate a, we derive
2
Q, = — npaV,.

This generalized force Q,is applied to the fluid; at each end of the plate it

is equal to T‘Qa and is directed toward the origin along the x axis. The

suction force acting at each end of the plate will be P.= — —-Q,. It is

produced by infinite velocities at points + a. We select the velocity
circulation T in such a manner that the st “on force at point x=—a
disappears. Evidently, here the velocity a. point x= 4ais doubled from
symmetry conditions, while the suction force increases fourfold as
compared with a plate without circulation. Thus P, =0 and P,, = 2ngan(.

173




1
0 4= heex,

- Vv = 050 L
a +a V& 0 P 2 %z?
-a 0 +o0x - ’ h R
a ] g 05 10 L’

FIGURE 81. FIGURE §2.

Since by the formulation of the problem V,= —Vsine, and for flow past

a plate with circulation the absolute value of the resultant force is
R= VIl = L , we have finally
sina

P = 2napV?sin
T = 2naVsina: ¢ = 9m

Yoo

These formulas express known properties of a plate placed in an
infinite flow with circulation. The solution of the problem of impact of
two biplane plates (Figure 81b) can be represented as an expression for the
induced masses of each plate:

m;, (%) = m % (%) = npa'x, (-Z—) .

[
From physical considerations + <% <1when0 < % < oo, since the induced

mass for a plate floating on the free surface is one-half that for a plate in
an infinite fluid.

Applying the Lagrange equation to the kinetic energy of one plate
2
T = npa*x, (%)—Vzl and denoting the derivative of function x, =, (%\ with

respect to the argument by %, we have

ar %4
= noax,V? — nghx, —2—” = moaV? ("1 — é_% x.) = —Q,.

Repetition of all the preceding considerations for different angles of attack
yields

i LI ST S C SR

It is thus found that the reduction in the lift of a hydrofoil when approach-
ing the free surface is due to a reduction in the suction force. The graph of
functions x, and x, is given in Figure 82. Satisfaction of the Chaplygin-
Zhukovskii condition at the trailing edge of the foil requires a smaller
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velocity circulation and consequently a smaller lift. All these conclusions
pertain to a hydrofoil in continuous flow, as well as to a cavitating hydrofoil,
but in the case when the cavity is situated at the rear of the foil.

6. Hydrodynamic features of hydrofoils

The hydrodynamic forces of a hydrofeil in both noncavitated and cavitated
flow are calculated from the same hypothesis of a plane section which is
generally postulated in the theory of large-span foils. It is assumed that
foil-span element dz has the same lift as a similar element of an infinite
foil placed at an effective angle of attack. The depth of hydrofoil
immersion reduces ¢ of the profile, increases the induced flow downwash
a,, and changes the effective angle of attack due to the profile thickness.

It will be shown below that a wedge-shaped profile with wake cavitation
(Figure 717, flow pattern II) has properties close to those of a profile in
noncavitated flow. However, angle of attack a, measured from the chord
line, is smaller than the angle of attack measured from the chord by the
amount p (Figure 83). When the profile moves at a large depth, u does not
affect the lift, but as the foil approaches the free surface, the effect of the
profile taper demonstrates itself in increasing the effective angle of attack
by the amount u% (QT") As shown by Fedorov y (27") =~ ;" (_25".) — 1.

For an ideal foil e, =2m; however, it was found experimentally that ¢2_
is somewhat smaller than 2a and therefore we shall set ¢ = 2nk,, where
ky < 1.0.

Using the above results we express the lift coefficient as

2nkgnsfa + oy + uX
o, = Zrlat o FuAl (7.14)

1 s
+g 0+

where %, =%, (—:—) and %, =%, (-1:—) For an infinite fluid » = 1 and x, = 1. For

a very small immersion depth x, and x, tend to 0.5, while ¢, is halved.
Angle «, depends on the profile camber; this angle will be defined below.

y
Y3
-Q +a
A
d = 2.t £
4 T —
Vo b
FIGURE 83.
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The induced drag and induced downwash are determined from (7.10). 1If
the foil is not thin and a wide cavity forms behind it, then the additional
downwash due to the cavity (see Section 3) can be calculated from the
expression

Y v,'- —+ Av

LI e
v Y

The induced drag coefficient and the downwash angle are finally obtained
from the expression

%
o 1 +1)=cp, (7.15)

Cry =

The value of 1 + 1 for a wedge-shaped [tapered] profile is found from
formula (7.9). This quantity has been incorporated into (7.14). In addition
to the induced drag the foil is acted upon by the Bobylev drag (see Section 9),
the friction drag and Zhukovskii [form] drag.

The Zhukovskii drag arises as a result of loss of suction force at the
profile nose. In round-nosed airfoils a large part of the suction force
actually materializes and the Zhukovskii drag is low. In order to prevent
cavitation and flow separation, hydrofoils are usually designed with a sharp
leading edge, at which the suction force does not materialize. Flow past
this sharp edge produces a vortex which is carried away by the flow. The
calculation of Zhukovskii drag is given below.

It can be concluded from the above that from the hydrodynamic standpoint
a cavitating hydrofoil differs from one without cavitation only by the
Bobylev drag and by a usually quite insignificant increase in the induced
drag due to expansion of the cavity.

7. Flow past a wedge-shaped profile

We now consider the flow past a thin tapered profile with a cavity,
applying all the standard hypotheses of thin-wing theory (Figure 83).
The x, y, coordinate system associated with the profile is oriented so that
the origin is located at the middle of foil chord & and the x, axis coincides
with the chord line AB of profile ABD. The profile is wedge-shaped and in
general the angle made by the camber line with the wedge generatrix is tp,
which is a quantity dependent on the abscissa r;. The equation of the
profile camber line is y, = } (xy) and the angle of attack is a. If the flow is
assumed to be potential, then the normal velocities at the lower (-) and
upper (+) boundaries are

A

an(—: =Vyloa—F(x) +p) = — v, — v,

5’?’;= Vola —F (x)) — p)= —v,+0,.
-+

Angle @, F(x,) and u for a slender profile are very small; hence the profile
can be moved to the x axis on the assumption that the boundary conditions
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a+%=f'(x)_ +p+ -2 =0 (7.186)

are satisfied on the x-axis segment from - ato +a, wherea = %. The first

of boundary conditions (7.16) is the ordinary condition of thin-wing theory
and pertains to the camber line. The
second boundary condition pertains
to an uncambered wedge.
If it is assumed that a vortex of
¥ strength y=y(x)is situated on
segment b of the x axis, then an
elementary vortex located at point
{ of thisaxishas a circulation dI' =
=y()dt. According to the Biot—
Savart law the following velocity is
induced at point «:

—v@dl

do, (x) = HE—g)

Integrating, and substituting the result
into the first of equations (7.16), the
known equation of thin-wing theory is
FIGURE 84. obtained:

1 Fyar
¥(0) ,
vy Vs = &) (7.17)

—a

a+

Function f (x) can be found by specifying function y ¢) with the aid of
equation (7.17). A second integration then yields the airfoil equation
y = f(x). Equation (7.17) can be solved by the well-known Glauert method.
Traversing a vortex sheet element along the edges of rectangle 1, 2, 3, 4
(Figure 84) yields

Uy dx + vy dy — Uy ydx — v, dy = — ydx.

Since v, is continuous when crossing the x axis, 4 — 4y, =— 7 OT,
by virtue of symmetry, vy = 2 uy,. The tangential velocity thus possesses a
‘discontinuity when crossing the x axis.

It is assumed that a cavity rolls of the edges of the wedge and that the
free streamlines I and II extend to infinity. According to the preceding
definitions the velocity circulation is

+a +a
[= SY(C)dC= j.(ul(—)—ul(+))dc.

Figure 84 shows the flow pattern and flow boundaries. Since contours
I—IV~—1Il and I—(-a)—T1I—1II', V, I' and I were drawn within the potential
flow, the linear velocity integrals over these contours are zero, and hence
T+r,=0and ' +T,=0, or [, = I,. The linear integrals over cavity
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segments I—1' and II-1II' cancel. Contours II—IV—1I and II'—V —1I' are
termed regular contours, since they intersect the cavity at equal abscissas.
Taylor's [Kelvin's] theorem claims that the velocity circulation in steady
motion is the same over any regular contour encompassing the profile /3/.

8. Application of the Sedov theory to cavitating hydrofoils

Sedov's theory /19/ can be used for determining the hydrodynamic
characteristics of a hydrofoil provided that its profile equation y = f (x)
is known. From the physical point of view the flow in the vicinity of a thin
curved profile can be approximately treated as the superposition of two
flows — one induced by the vortex strength y (x), distributed along the

segment (—%_ + ;—), and another, corresponding to cavitated flow past the

profile and generated by sourcesg (x) = 2 y,, distributed along the segment

b
(—- 5. + oo)

In order to construct the theory of a thin cavitating hydrofoil we assume
in the case under study that W,(2) is a complex potential in the vicinity of the
vortex sheet (W, (2) = ¢, + i), while W,(2) is a complex potential of symmetric
cavitated flow (W;(2) = ¢, + ip,). In keeping with boundary conditions (7.16) we
have the following symmetry conditions: F,(2) =% =u,—iv,. Here, when
approaching segment b from the top (+) and the bottom (~), 4, = —u,_,

s dw, .
while Uiy = Ui and Fg(Z) = d—z’=u2—tu,. Also Ugy = Uy = Uy, Upy == —Uy_ at

interval (— -, +oo).since by definition the cavity extends to infinity.

We apply the Cauchy formula F(z) = z_zlué‘)%dt to the contour delineating

region G and proceeding from point z= —a along the top surface of the
profile and cavity to the large circle z= — o, then along this circle to the
lower boundary of the cavity, and then along it and along the lower surface
of the profile to point z= —a (see Figure 84).

At the large circle's circumference dd_‘f‘ = 5’;:_2; consequently, the
contribution to the integral in the Cauchy formula along this circle is zero.
The cavity boundaries from x = +ato x = — co were moved onto the x axis;
velocities «, and v at the upper and lower boundaries have the same sign,
while the direction of traverse of the upper and lower boundaries is
opposite. Consequently the contribution to the integral along the cavity
boundaries is also zero.

Thus, the only nonzero part of the integral is obtained only by traversing
the profile contour from the lower to the upper separation point. Since

from symmetry F,({)y —F,(0)- = Uy —uy. =y (L),
+a

1 .
F (2 =WSTY-(—C_)zd; =u, (2) — v, (2).

—a

Substitution of v,(x, 0) into the first linearized boundary condition yields (7.17).

178




The idea underlying the Sedov solution consists in selecting auxiliary
function g(2) in such a manner that the integrand in the Cauchy formula
applied to function F,(2)g(2) would contain only the imaginary part of F,z).
It is clear that function g(z) must be continuous in region G, and analytical
function F,(2)g(2) should decrease at infinity not slower than 1/z. Function
g(2) to both sides of the cut {—a. + a) should have a different sign so that
g1{x; +i0) would be equal to—g(x, —i0). Under these conditions the Cauchy
integral applied to function F,(2) g (z) will have the form

a

+
_ 1 1 r—ing g+ i)
Fy@ = 57 ms__—z_z dz.
—a

We introduce, in the assumed coordinate system, the function gz = i_‘*_ﬂ.

2!

the root taking a minus sign at x<<—a. This function is continuous
over the entire region G and at the boundaries of the segment. If the root is

taken with the appropriate signs it will have the form gx +i0) =—g(x—i0) =

= il/ Z—ig Hence

— 20,8 ({) = 2v, :_é .

The Sedov formula can be expressed in the following final form in the
assumed coordinate system:

+a
Fr@) = —1w, =<} e S C’_"l’ V 2j§d;. (7.18)

—

O~ X_4+... Expression (7.18) with

the first of boundary conditions (7.16} yields

+a
P — S2vll Zicc

The lift of the profile is

The expansion of F, as z > is

+
d= o, | lw—r O ) 1. (7.19)

V2
Y = oV, = 2nb -9—23- (@ + o)
(7.20)

1 v 1
m=—g | r0)
-l

The suction force acting on the profile in the vicinity of 2= —a is also found
from the Sedov formula
)2
J

P= — gn[(z+a)(dd‘f‘
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Simple calculations yield

V2
P=—2mbl(a 4oy
" 7.21
P B S O WY ( )
LI n Vi—ez

In a real, discontinuous fluid a Zhukovskii vortex forms at the sharp
leading edge, a sheet of such vortices rolls off the profile surface, and the
suction force vanishes. This produces the Zhukovskii drag X;= — P; the
Zhukovskii drag coefficient is

Cpj = 2n(a + o)A

The complex velocity F,(2) due to sources g(x) = 2v, = 2V u (x) distributed
along segment —a<x< + oo can also be obtained from the Cauchy formula.
On the basis of the assumed symmetry £,(2) can be expressed as

5 1 e Ugy — Vg
F,(z)=u2-1ve=——2—n§—CT~dL. (7.22)
—a
The integration in (7.22) is carried out only along the profile and cavity
axes, which were moved to the x axis. In spite of the fact that the drag
for a cambered wedge is not obtainable from the Bobylev formula and
cannot be calculated by the same method, we shall still call it the Bobylev
drag.
For a plane cavity the contour of free boundaries at high x is /3/

2 Xy
y=ﬂ:7; _nJV;

X
Bobylev's drag coefficient ¢, = Q—V';- for an uncambered wedge is obtained
0

b——

directly from the above solution ané, for small angle yand o = 0, is equal to
80 s (7.23
o= Sl = e 2

According to the Sedov formula, which is valid only for slender bodies, the
drag coefficient at ¢ > 0 is approximately equal to cs +o.

As a result we obtain the following general conclusion: a slender profile
with wake cavitation has the same lift and drag as the profile camber-line
section in noncavitated flow, but with the Bobylev drag calculated for the
same but uncambered profile added to the camber-line section drag.

9. Estimating the hydrodynamic features of a noncavitating
wedge-shaped profile
Figure 85 shows the pressure distribution along the edges of the wedge.

The solid curve corresponds to the pressure distribution p = 2£=2) gyer
oy

180




the edges of a symmetric wedge (Bobylev's problem). The dashed curves
for p.,and p., show the pressure distributions respectively for the lower
(=) and upper (+) boundaries of a cambered wedge; the area bounded by
these curves is proportional to the lift. An obvious condition for the
absence of cavitation at the upper edge is p ., >0, i.e., the pressure at the
surface of this edge should be higher than the static pressure.

2PBy)
LY
10§
[ Tt— Stagnation point
N at the nose
\
08 \\ \Stagnation point at
the lower edge
I g
0.6 (Y
-A[ \
0.4 N
AR
1
N
0.2+ = =t —
\ é*‘ [ — \\\
>—\ N
o i
-10 -05 0 t=Lr =L
b 2
FIGURE 85.

We shall clarify the limiting conditions for noncavitated flow past a
wedge-shaped profile. We designate the tangential velocity of flow past the
edges of an uncambered wedge by V, = V, + 4, and the additional tangential

velocity induced by the vortex sheet (profile camber) by 4,. The resuiltant
tangential velocity is then:

at the upper edge

Vi = Vo +u, +u;;
at the lower edge

Voo = Vo + 4y —u,.

The pressure at the upper and lower edges is obtained from the
Bernoulli equation

1
P2 —pPo=—gVolup £ u)— o, £ uy).

The condition for noncavitated flow at the upper edge is p, =p, or
4, +u, = 0. Velocity u, for an uncambered wedge is negative, and hence

Vo + u, < V,; the resultant velocity at the nose stagnation point is zero and
hence V, +u,= 0 and u,= —V,.
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Using the pressure distribution over the edges, we determine the lift
and the Bobylev drag. Retaining [only] first-order infinitesimals,

+a +a
Y = S (P_, — Py )dx = j eV, + ufeyyy — ) d,

(7.24)
+a +a .
X, = 5 (O, + Pry,) udx = —2S oV, + 2 (43 + ud} pax.
By definition 4, —u,_, =v (see Section 7). Consequently, the elementary

circulation at chord point x is dI'= ydx = 2u,4,dx, while according to
Zhukovskii's theorem the elementary lift is dY =o(V, + a,)dl’, where

V, +u, = Vo isthe velocity pastthe vortex dI'. It was assumedinthe preceding
sections that for an infinitely thin wedge (u—~0) 4, = 0; for a wedge with

finite angle u, 4, and V, are functions of abscissa x. Consequently, the
refined form of equation (7.17) is

+a
1 ygrdt o
+ X YOE — . (7.17a)
—a

Theoretically the maximum lift corresponding to the cavitation boundary

{p, =p,) can be obtained when 4, =— . Hence from (7.24)
+1
2 u Uy \2
Vi = — Vb | [ 2+ (5] |ar

The drag of an uncambered wedge from (7.24) is
+1
2 i 1 fus\?
Xo=—-QVob5 [—V’; +7(%) ]pdt.
-
However, Bobylev's solution yields directly
8 2 . V8 4 8
XO:’,Tl_—n“' p.bT= ':—I-M—‘I?,"IJ- prV%’.
Equating both these expressions for X, we can set
+1

e

Ve £y Flapg ot
J(R)ar=gw | ()
hat}

With the above expressions we find the limiting formulas for a cambered

wedge when the pressure at the upper edge equals the static pressure in the
flow:

8 4 ov2
Koz (1 = ulp %
cxp
7.25)
4 V2 (
Y max =TP.(| —;—p)bT
€y max
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If the profile curve of the wedge is curved along an arc segment

with camber §,

then in order to obtain cyme = 0 at @ =0 we require that

"F - %p. (l —;1 p,j . The Sedov formula for a circle-arc segment gives

a, =0 and o, = 2_’5, and therefore when a = 0 we have impact-free entry and

the Zhukovskii drag is zero.

TABLE 15
B, deg 2 3 5 ki 9
€, max 0,085 0.124 0.197 0,264 0.318
-g— 0.00675 0.01 0.0157 0.021 0.025
Ky max 28,5 19.0 1.5 8.2 6.4

Table 15 lists values of ¢, m and corresponding values of f for wedges
with different p. The lower row gives values of the theoretical lift/drag

y
ratio Kgma = 3"(“" . Actually the value of Kimax is much lower, since the
s

Bobylev drag should be supplemented by the frictional resistance and the
Zhukovskii drag.

The maximum lift from (7.25) is defined subject to the condition that at

the upper edge u; + w4, = 0, while at the lower edge u; + uy_,=2u,. Asa
result the tangential velocity at the lower edge is V=V, +2 u,.
yilu
0
7 — -
6 0 o x
% BT
y
0
A - LA
— ¢ X
h——va 8
FIGURE 86.

At the stagnation point V, = 0; consequently V, +2 u, = 0, and this point

is situated at abscissa x,, where u; = —% V,, while the excess pressure for
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an uncambered wedge is 3/4 of the velocity head. Hence the lift which
can be actually attained at the upper edge in the absence of cavitation is
somewhat lower than that calculated from (7.25). In general it is always
desirable to attain impact-free entry under operating conditions, i.e.,
one should strive to locate the stagnation point at the nose in the manner
shown at the bottom of Figure 86.

10. Polar diagram of hydrofoil and experimental data

Figure 87 shows the hydrodynamic characteristricts of a delta-shaped
foil with opening [wedge] angle 2 p= 10°, span L = 320 mm, chord ¥ =100mm,
angle a, = 3° (see equation (7.20)), a,=~0. Such hydrofoils were tested by
Fedorov and the experimental data were compared with experimental
results /24/. The models in these experiments were towed at 8 m/sec

with relative immersion depths of % equal to 0.955, 0.445 and 0.255. The

principal quantities needed for calculating ¢, were obtained from formula
(7.14) with &k, = 0.8; the principal results are listed in Table 16.

&y

A
/ /

L = 0,955
azs 0455
0255
1474
0 5 o
FIGURE 87.

It is seen from Figure 87 that the experimental data (points) are very
close to the theoretical results (lines). The last two columns of Table 16
list the averaged experimental data on ¢ and on the zero lift angle qy= — o, —
—mnx. Comparison with theoretical results shows that they are in satisfactory
agreement with experimental data.

The drag coefficient is calculated from the expression

Ce = Cxs + Cyy + €4 -+ 2y
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the Bobylev drag is given by

8 4
cx6=';'(l—'—n—p.) = 0.
the induced drag is
0.1305; %—
- % 1 4 1) 0.15¢c%; z
Cxp = ﬂkih( + 1) b

172;

= 0.955;

= 0.455;

h -
0165cz; % =0.255;

and the Zhukovskii drag is given by

Cyj=2n(a + uX + a, +a,)’

TABLE 16
Experiment
- —','_—‘ B e £ [ A B & loven
0.955/0.300( 0.95 | 0.84 [1.002| a.78| 1.62 | 2.94 [0.25°| 3.00 | 3.15
0.455(0°142) 0.85 | 0.73 |1.092| 4.28 | 1.645 | 260 |0.90°| 2.56 | 3.90
0.255]0.080] 0.75 | 0.66 | 1.092| 3.78 | 1.63 | 2.31 |1.65°| 2.29 | 4.50
€,
Y I =030
+7
A
0.50 i A
2¢4 [ Cxj
+5 +77
Ces ) /]
// +5 G2
+7
4 2 =008
|/ =0
L / +3
025 +”
»
' l
Y.
) "
, N [ V-5
I 005 0.10 ¢, =03
0.05 , 010
¢, f-=008
FIGURE 88.
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In the given case a, = 0, the frictional resistance is 2¢ = 0.01. In
general the frictional resistance is calculated either from the Prandtl-
Schlichting formula, or from experimental data.

Figure 88 shows polar diagrams for immersion depths of %= 0.3 and

% = 0.08. It is seen by comparing these curves that the experimental data

differ to a greater degree from the calculated results than those for the lift.

The approximate theory of cavitating hydrofoils thus expresses
satisfactorily the lift, and somewhat less satisfactorily (but still correct in
a qualitative respect) the total drag.

11. Fully stalled profile

A plate in-Rayleigh flow (Figure 77, IV), a cambered airfoil or profile,
flow past which involves streamline separation from the upper surface
(Figure 77, III), can be identified with flow past a tapered profile and the
above theory can be applied to these cases. It was pointed out in Section 1
that free streamline AD and line AB can be treated as the walls of profile
ABD and it, in turn, can be interpreted by means of the theory of profiles
with cavitated wakes.

The mean (camber) line AC (dashed line) [of a wedge| and the mean chord
AC of a plate should perform the same function as for a tapered profile.
Hence the lift actually developed in a flow past a plate can be determined in
two ways: on the one hand, from Rayleigh equations for plate AB, placed in
a flow at angle 8, and on the other hand, for equations of the wing theory
referred to angle of attack a for chord AC of the camber line. As for wedge-
shaped profiles these considerations are valid primarily for small angles
of attack, when the angle between the plate and the free streamline is small.
The lift coefficient referred to chord & is then given by .

The solution of the problem of streaming flow past a plate at some angle
of attack /10/ yields the following expressions for the lift and drag:

Yy 2n sin 6 cos 6 QV%
= 4t asing 2 ° (7 26)

2
2n s1in“0 QV%

X= 44 nsing P

The lift and drag coefficients for small 8 are respectively ¢, = %e and
Cp = % e,

Equating the lift and drag coefficients obtained from the streamline-flow
theory and from the wing theory we find that

¢, =2n(a+a) =76

= 2n(a + 0,)t 4 Cxs = 12 0,.
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1

According to the first expression the effective angle of attack is a +a, = 8.

A plate in streaming flow can be treated as a deforming wedge-shaped
profile, the upper surface of which rises with an increase in 8 such that the
effective angle of attack e +a, increases four times as slowly as angle 6.

It is possible to select a wedge-shaped profile with angle v which has
the same lift as a plate at some angle of attack, in which case

8 b3
Cszpz.—Q—e.

If this profile is cambered so that « +a,= 0, the drag coefficient will

become ¢, =7?—p’ and the lift/drag ratio will be K, = Tl’ while for a plate

a=F=T5 ' u- We conclude from this that in the case of equal 1lift a
cambered tapered profile in noncavitated flow at the upper edge should have
a lift/drag ratio which is at most a factor of %— greater than a plate with the

same chord with streamline separation.
This situation can be explained as follows (Figure 89). The dependence
of coefficients ¢, and ¢, on angle 6 for a plate in streaming flow is expressed
by straight line 0A and parabola 04'.
If we imagine that, upon attaining an

8 . angle of 8, (in Figure 89, 6,= 0.1 rad),
/i the free streamline above the plate
& 1ARAL solidifies, and the solid wedge thus
2 V/ formed rotates so as to reduce angle 0,
015 0.03 then the value of ¢, will change along
4 4 | straight line 4B while that of ¢, will
2.0 Z y 1 7 002 vary along parabola A'B’. Clearly
Ve 0’*0;2/ 4 ol pm 6, —65=a+a,. If the profile has a
o5 / 8 lc [ A~ 007 bottom camber selected in such a
4 T3 A1 manner that the lift corresponds to
I 3 point A and the Zhukovskii drag is
0 == 3 - 0 zero, then at 8 =6, only the Bobylev
005 6-01 & . g
MLJ drag ¢« will remain.
When the angle of attack is reduced
FIGURE 89, ¢, will change along straight line AB

(with slope 2x), while ¢, will

vary along the left branch of the
Zhukovskii-drag parabola B°A’'D’. When the angle of attack is increased
(8 > 0,) flow separation will occur at the upper surface. In both cases the

values of ¢, will vary along straight line AD (with slope ;~), and ¢, respective-

ly along curve A'D' for flow past a plate and curve A’D"for flow past a
cambered plate or wedge. It is thus found that, when rotated so as to reduce
angle 6, a plate with solidified streamline above it and the cambered wedge
behave like an airfoil, while when rotated so as to increase the angle of
attack they behave as a plate in streaming flow.
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Separation from the top surface is sometimes delayed and occurs at
some angle of attack® > 6,; the lift drops sharply upon separation. However,
this separation delay occurs at a relatively low velocity and cannot be
expected at high flow velocities.

12. Application of wing theory to the calculation of
a cavitating plate

The validity of the correspondence of lift coefficients ¢, = 2 5l + «,) = ;l 6

for a cavitating plate and for a camber-line arc of a wedge-shaped
airfoil can be established by direct calculation of angle «,. This angle is
now calculated from the Sedov formula (7.20), while the mean line of a

profile formed by a plate and the free streamline above it will be calculated
from Fedorov's formulas /23/,

Yy 7 0 I
X

b\

* s

A

0 g /] X
b

[
FIGURE 90.

Figure 90 depicts the plate and free streamlines for 6 = 10°, the
coordinates of which were taken from /23/. The free streamline makes a
large angle with the plate, the mean-line chord has also a relative length of
1.0, and hence the abscissa of point D does not coincide with 1.0. At low
8, in the limit as 6 -~ 0, the abscissa of point D tends to infinity. The above
remarks pertain to very small angles 9.

In the coordinate system shown in Figure 90 the equaticn of the free
streamline contour behind the plate is expressed by Fedorov's formulas

3= ey [ B = h—2eht—]:
%:T:‘sm[m%(ch%—l)-i—?(cht-kl)+nsin0];
¥ sin @ sh2t_
D 4+nsin0( 2 )'

where t is a parameter varying from zero to infinity. For small 6 we have
approximately cos 6 = 1 and sin 6 = 8. It can be shown by calculations that,
as 60, the free-streamline point above the trailing edge of the plate

(;; = 1) is obtained at T,= 1.76.
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Using these expressions, we find the correspondence between the angle
of attack ¢ of the chord line and the angle of attack 6 of the plate. For
small angles of attack

—a__t _y _l_ sh 21, — 21,

For the mean line we may set f(x) = 09 (x), where

, )__l_. _ 1y =_l__ ch2r—1 sh 2ty — 21,
Wu_? dx, 2 x 2 |sh2r—2sh v ch 2ty —dch vy + 3«

With the aid of (7.20) and various computations, we derive

+1

. 1 , L+

9—'~——Sw(t) o1
—1

n

Hence, by direct calculations, o +a, = %9.

The drag of a cavitating plate is ¢, = --02, Since a = 0.150, the wedge
gp Pl g

formed by the plate and streamline OD will have a wedge angle of 2p =
=2(8—a) = 1.70. Bobylev's drag for this wedge is ¢, = (0.85)*6® = 1.836¢,
i.e., 16.5% overrated. Consequently in practice the drag of a plate is
equivalent to the drag of a wedge formed by the plate and the free boundary.

13. Stalled foil of finite span

Flow past a stalled foil of finite span, as past an ordinary foil, involves

the appearance of an induced velocity and an induced downwash @, = T%T

1
However, the upper surface of a stalled foil is formed by the free boundary,
which reacts to the downwash by coming close to the trailing edge of the

profile by an amount a4. Hence the angle of attack of the chord line
increases by %ai due to the approach of the boundary and decreases by an

amount ¢, due to the downwash proper., Thus, if the angle of attack of the
chord line at A = oo is denoted by «, then the effective angle of attack of the
chord line for a finite-span foil is

1 1
aef=a +go —g =a—?a,=0.15(0 —a),

The value of a, for the profile formed by the plate and the free boundary

@ 0.1 =i. Hence the effective angle of

is proportional to «, i.e., %~ 0.18 3

attack for a finite span is

@+a)= (l +—§—-) (a—-;—a,)z —:—(9——@).
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but x, still differs from unity, will have the following form when the

|
The 1ift coefficient ¢, when the immersion depth # is so great that x», =1 I‘
. ; 4
additional, cavitation-induced downwash is taken into account: |

-8
2
6y =—"——. (7.27)
14 T (10
This yields the induced downwash angle a, = —e%x— in the vicinity of a
(=
14+

stalled hydrofoil. It can be shown that the stalled and ordinary foils
have the same downwash angle provided
they have equal A and c,.

Gy — Using Fedorov's formulas /22/,
h_ps0 - Kryukov /9/ obtained an approximate
b o M
0.3 AN /1‘ expression for the lift coefficient of an
2. 79 A infinite plate (A = o) as it approaches the
02 4 | b surface. Denoting the streamline thickness
BT at infinity by & =§, the Kryukov equation
2_p70 |
af )4 '"lb [Z‘m assumes the form
[ [ L c = 27 sin B cos § cos B
5 10 15 8 v= 4+,,sin6< +l+33ﬁ).
FIGURE 91.

Using (7.26), we derive an expression
for the function which takes into account
the variation in ¢, as the free surface is approached (cos 6-1):
¢, & _ 1

— =1+ —
Sy 1+3.3ﬁ

Ky =

For not too small immersion depths § can be replaced by the relative

immersion depth h = .:-. Function x, increases as the free surface is

approached and equals 2 at § = 0.
The lift coefficient is now

n
7
2 — (7.28)
V4 g (1+7)

For planing 8 =0, % =2, » = 0.5 and v = 0; hence




Figure 91 compares Kryukov's /9/ experimental data with those obtained
from (7.28), in which, however, ¢, was calculated from (7.26), since
angles 6, which in the experiments were as high as 18°, cannot be treated
as small. It was assumed in these calculations that 1 + v = 1.0 and 4 = 4.
This comparison shows that the theoretical values of ¢, are higher than
those obtained experimentally. As this comparison was conducted for

wedge-shaped foils, it may be assumed that ¢, = % &, and that the

correction factor is k,=~0.8 — 0,9.

The above fundamentals of the theory of cavitating hydrofoils allow one
to carry out practical calculations for high-aspect-ratio foils. Comparison
of the theoretical results with experimental data shows that the theory
describes the actual flow quite accurately. It should be noted that in
examining cavitating hydrofoils we considered only the simplest scheme.
This amounted to assuming everywhere that the lift distribution over the
span is elliptical; the induced velocity and the dynamic surface rise were
taken into account only for the center of the foil. The method for including
the effect of the cavity width on the induced downwash in the vicinity of the
hydrofoil is quite approximate. A number of other simplifications made in
constructing the theory can be listed. However, in spite of all these
approximations the theoretical and experimental results are in quite
satisfactory agreement, and this makes it safe to claim that in other cases
the construction of an approximate theory based on the same principles will
yield satisfactory results.
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